These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 16930317)
1. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Verdoy D; Coba De La Peña T; Redondo FJ; Lucas MM; Pueyo JJ Plant Cell Environ; 2006 Oct; 29(10):1913-23. PubMed ID: 16930317 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Armengaud P; Thiery L; Buhot N; Grenier-De March G; Savouré A Physiol Plant; 2004 Mar; 120(3):442-450. PubMed ID: 15032841 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Coba de la Peña T; Redondo FJ; Manrique E; Lucas MM; Pueyo JJ Plant Biotechnol J; 2010 Dec; 8(9):954-65. PubMed ID: 20353403 [TBL] [Abstract][Full Text] [Related]
4. A novel Δ(1)-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation. Kim GB; Nam YW J Plant Physiol; 2013 Feb; 170(3):291-302. PubMed ID: 23158502 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation. Boscari A; Van de Sype G; Le Rudulier D; Mandon K Mol Plant Microbe Interact; 2006 Aug; 19(8):896-903. PubMed ID: 16903355 [TBL] [Abstract][Full Text] [Related]
6. Expression analysis of proline metabolism-related genes from halophyte Arabis stelleri under osmotic stress conditions. Jung Y; Park J; Choi Y; Yang JG; Kim D; Kim BG; Roh K; Lee DH; Auh CK; Lee S J Integr Plant Biol; 2010 Oct; 52(10):891-903. PubMed ID: 20883441 [TBL] [Abstract][Full Text] [Related]
7. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Merchan F; de Lorenzo L; Rizzo SG; Niebel A; Manyani H; Frugier F; Sousa C; Crespi M Plant J; 2007 Jul; 51(1):1-17. PubMed ID: 17488237 [TBL] [Abstract][Full Text] [Related]
8. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Bianco C; Defez R J Exp Bot; 2009; 60(11):3097-107. PubMed ID: 19436044 [TBL] [Abstract][Full Text] [Related]
9. Effects of free proline accumulation in petunias under drought stress. Yamada M; Morishita H; Urano K; Shiozaki N; Yamaguchi-Shinozaki K; Shinozaki K; Yoshiba Y J Exp Bot; 2005 Jul; 56(417):1975-81. PubMed ID: 15928013 [TBL] [Abstract][Full Text] [Related]
10. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Ogawa D; Yamaguchi K; Nishiuchi T J Exp Bot; 2007; 58(12):3373-83. PubMed ID: 17890230 [TBL] [Abstract][Full Text] [Related]
11. Transgenic García de la Torre VS; Coba de la Peña T; Lucas MM; Pueyo JJ Front Plant Sci; 2022; 13():829069. PubMed ID: 35154232 [TBL] [Abstract][Full Text] [Related]
12. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Benlloch R; Roque E; Ferrándiz C; Cosson V; Caballero T; Penmetsa RV; Beltrán JP; Cañas LA; Ratet P; Madueño F Plant J; 2009 Oct; 60(1):102-11. PubMed ID: 19500303 [TBL] [Abstract][Full Text] [Related]
13. Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. Yousfi N; Slama I; Ghnaya T; Savouré A; Abdelly C C R Biol; 2010 Mar; 333(3):205-13. PubMed ID: 20338538 [TBL] [Abstract][Full Text] [Related]
14. [Evaluation of salt tolerance in Nicotiana tabacum plants bearing an antisense suppressor of the proline dehydrogenase gene]. Kolodiazhnaia IaS; Titov SE; Kochetov AV; Komarova ML; Romanova AV; Koval' VS; Shumnyĭ VK Genetika; 2006 Feb; 42(2):278-81. PubMed ID: 16583712 [TBL] [Abstract][Full Text] [Related]
15. Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. López M; Tejera NA; Iribarne C; Lluch C; Herrera-Cervera JA Physiol Plant; 2008 Dec; 134(4):575-82. PubMed ID: 18823327 [TBL] [Abstract][Full Text] [Related]
16. Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Frendo P; Harrison J; Norman C; Hernández Jiménez MJ; Van de Sype G; Gilabert A; Puppo A Mol Plant Microbe Interact; 2005 Mar; 18(3):254-9. PubMed ID: 15782639 [TBL] [Abstract][Full Text] [Related]
17. Role of soybean GmbZIP132 under abscisic acid and salt stresses. Liao Y; Zhang JS; Chen SY; Zhang WK J Integr Plant Biol; 2008 Feb; 50(2):221-30. PubMed ID: 18713445 [TBL] [Abstract][Full Text] [Related]
18. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. Delauney AJ; Hu CA; Kishor PB; Verma DP J Biol Chem; 1993 Sep; 268(25):18673-8. PubMed ID: 8103048 [TBL] [Abstract][Full Text] [Related]
19. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276 [TBL] [Abstract][Full Text] [Related]
20. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Hong Z; Lakkineni K; Zhang Z; Verma DP Plant Physiol; 2000 Apr; 122(4):1129-36. PubMed ID: 10759508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]