These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16930611)

  • 41. Colloid mobilization and transport during capillary fringe fluctuations.
    Aramrak S; Flury M; Harsh JB; Zollars RL
    Environ Sci Technol; 2014 Jul; 48(13):7272-9. PubMed ID: 24897130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction forces between colloids and protein-coated surfaces measured using an atomic force microscope.
    Xu LC; Logan BE
    Environ Sci Technol; 2005 May; 39(10):3592-600. PubMed ID: 15952363
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tracking colloid transport in porous media using discrete flow fields and sensitivity of simulated colloid deposition to space discretization.
    Li Z; Zhang D; Li X
    Environ Sci Technol; 2010 Feb; 44(4):1274-80. PubMed ID: 20088544
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Causes and implications of colloid and microorganism retention hysteresis.
    Bradford SA; Kim H
    J Contam Hydrol; 2012 Sep; 138-139():83-92. PubMed ID: 22820488
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S; Textor M; Meagher L; Spencer ND; Griesser HJ
    Langmuir; 2005 Jul; 21(14):6508-20. PubMed ID: 15982060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions.
    Li X; Zhang P; Lin CL; Johnson WP
    Environ Sci Technol; 2005 Jun; 39(11):4012-20. PubMed ID: 15984777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concentration dependent transport of colloids in saturated porous media.
    Bradford SA; Bettahar M
    J Contam Hydrol; 2006 Jan; 82(1-2):99-117. PubMed ID: 16290313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Does water content or flow rate control colloid transport in unsaturated porous media?
    Knappenberger T; Flury M; Mattson ED; Harsh JB
    Environ Sci Technol; 2014 Apr; 48(7):3791-9. PubMed ID: 24588072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
    Torkzaban S; Bradford SA; Vanderzalm JL; Patterson BM; Harris B; Prommer H
    J Contam Hydrol; 2015 Oct; 181():161-71. PubMed ID: 26141344
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colloid straining within saturated heterogeneous porous media.
    Porubcan AA; Xu S
    Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation.
    Johnson WP; Li X; Yal G
    Environ Sci Technol; 2007 Feb; 41(4):1279-87. PubMed ID: 17593731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distance and flow effects on microsphere transport in a large gravel column.
    Close ME; Pang L; Flintoft MJ; Sinton LW
    J Environ Qual; 2006; 35(4):1204-12. PubMed ID: 16825440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Magnesium hydroxide bulk and colloid-associated 152Eu in an alkaline environment: colloid characterisation and sorption properties in the presence and absence of carbonate.
    Pitois A; Ivanov PI; Abrahamsen LG; Bryan ND; Taylor RJ; Sims HE
    J Environ Monit; 2008 Mar; 10(3):315-24. PubMed ID: 18392273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrostatic interactions of colloidal particles at vanishing ionic strength.
    Sainis SK; Merrill JW; Dufresne ER
    Langmuir; 2008 Dec; 24(23):13334-7. PubMed ID: 18991422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.
    Shira JM; Williams BC; Flury M; Czigány S; Tuller M
    J Environ Qual; 2006; 35(4):1127-34. PubMed ID: 16738398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients.
    Cheng T; Saiers JE
    Environ Sci Technol; 2010 Oct; 44(19):7443-9. PubMed ID: 20812714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media.
    Mohanram A; Ray C; Harvey RW; Metge DW; Ryan JN; Chorover J; Eberl DD
    Water Res; 2010 Oct; 44(18):5334-44. PubMed ID: 20637489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers.
    Pazmino EF; Ma H; Johnson WP
    Environ Sci Technol; 2011 Dec; 45(24):10401-7. PubMed ID: 22029252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.