These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16930670)

  • 41. Oxidation of gas mixtures containing dimethyl sulfide, hydrogen sulfide, and methanethiol using a two-stage biotrickling filter.
    Ruokojärvi A; Ruuskanen J; Martikainen PJ; Olkkonen M
    J Air Waste Manag Assoc; 2001 Jan; 51(1):11-6. PubMed ID: 11218419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization and performance evaluation of an innovative mesoporous activated carbon used for drinking water purification in comparison with commercial carbons.
    Gong XJ; Li WG; Wang GZ; Zhang DY; Fan WB; Yin ZD
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13291-304. PubMed ID: 25940491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter.
    Han L; Liu W; Chen M; Zhang M; Liu S; Sun R; Fei X
    Water Res; 2013 Sep; 47(14):4861-8. PubMed ID: 23866148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removing of fulvic acids by ozonation and biological active carbon filtration.
    Klymenko NA; Kozyatnyk IP; Savchyna LA
    Water Res; 2010 Oct; 44(18):5316-22. PubMed ID: 20643470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.
    Rattanapan C; Boonsawang P; Kantachote D
    Bioresour Technol; 2009 Jan; 100(1):125-30. PubMed ID: 18619836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons.
    Yan R; Chin T; Ng YL; Duan H; Liang DT; Tay JH
    Environ Sci Technol; 2004 Jan; 38(1):316-23. PubMed ID: 14740753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins.
    Wang H; Ho L; Lewis DM; Brookes JD; Newcombe G
    Water Res; 2007 Oct; 41(18):4262-70. PubMed ID: 17604809
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ozone injection into an activated carbon bed to remove hydrogen sulfide in the presence of concurrent substances.
    Masuda J; Fukuyama J; Fujii S
    J Air Waste Manag Assoc; 2001 May; 51(5):750-5. PubMed ID: 11355463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Technical and economical analysis of the conversion of a full-scale scrubber to a biotrickling filter for odor control.
    Gabriel D; Deshusses MA
    Water Sci Technol; 2004; 50(4):309-18. PubMed ID: 15484775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparative assessment of biofiltration and activated sludge diffusion for odour abatement.
    Lebrero R; Rodríguez E; García-Encina PA; Muñoz R
    J Hazard Mater; 2011 Jun; 190(1-3):622-30. PubMed ID: 21514728
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of odor emitted from composting facilities using a porous ceramic biofilter.
    Park SJ; Nam SL; Choi ES
    Water Sci Technol; 2001; 44(9):301-8. PubMed ID: 11762477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Developing a biofilm of sulfur oxidizing bacteria, starting-up and operating a bioscrubber treating H2S.
    Moussavi G; Naddafi K; Mesdaghinia A
    Pak J Biol Sci; 2007 Mar; 10(5):701-9. PubMed ID: 19069851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activated carbon load equalization of discontinuously generated acetone and toluene mixtures treated by biofiltration.
    Li C; Moe WM
    Environ Sci Technol; 2005 Apr; 39(7):2349-56. PubMed ID: 15871275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam.
    Ramírez M; Gómez JM; Aroca G; Cantero D
    Bioresour Technol; 2009 Nov; 100(21):4989-95. PubMed ID: 19501506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars.
    Shang G; Shen G; Liu L; Chen Q; Xu Z
    Bioresour Technol; 2013 Apr; 133():495-9. PubMed ID: 23455220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of two typical regeneration methods to the spent biological activated carbon in drinking water.
    Liu C; Li C; Shan Y; Sun Z; Chen W
    Environ Sci Pollut Res Int; 2020 May; 27(14):16404-16414. PubMed ID: 32124306
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Operational characteristics of efficient co-removal of H2S and NH3 in a horizontal biotrickling filter using exhausted carbon.
    Jiang X; Tay JH
    J Hazard Mater; 2010 Apr; 176(1-3):638-43. PubMed ID: 20004059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption-oxidation of hydrogen sulfide on activated carbon fibers: effect of the composition and the relative humidity of the gas phase.
    Bouzaza A; Laplanche A; Marsteau S
    Chemosphere; 2004 Jan; 54(4):481-8. PubMed ID: 14581050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia.
    Jiang X; Luo Y; Yan R; Tay JH
    Bioresour Technol; 2009 Dec; 100(23):5707-13. PubMed ID: 19596572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Operational aspects, pH transition and microbial shifts of a H2S desulfurizing biotrickling filter with random packing material.
    Montebello AM; Bezerra T; Rovira R; Rago L; Lafuente J; Gamisans X; Campoy S; Baeza M; Gabriel D
    Chemosphere; 2013 Nov; 93(11):2675-82. PubMed ID: 24041568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.