These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 16930680)
1. Distribution of inland wetlands with sulfidic sediments in the Murray-Darling Basin, Australia. Hall KC; Baldwin DS; Rees GN; Richardson AJ Sci Total Environ; 2006 Oct; 370(1):235-44. PubMed ID: 16930680 [TBL] [Abstract][Full Text] [Related]
2. Rehabilitation options for inland waterways impacted by sulfidic sediments--a synthesis. Baldwin DS; Fraser M J Environ Manage; 2009; 91(2):311-9. PubMed ID: 19906482 [TBL] [Abstract][Full Text] [Related]
3. Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray-Darling Basin, Australia. Glover F; Whitworth KL; Kappen P; Baldwin DS; Rees GN; Webb JA; Silvester E Environ Sci Technol; 2011 Apr; 45(7):2591-7. PubMed ID: 21375259 [TBL] [Abstract][Full Text] [Related]
4. Flood hydrology and methylmercury availability in coastal plain rivers. Bradley PM; Journey CA; Chapelle FH; Lowery MA; Conrads PA Environ Sci Technol; 2010 Dec; 44(24):9285-90. PubMed ID: 21080644 [TBL] [Abstract][Full Text] [Related]
5. Factors that influence methylmercury flux rates from wetland sediments. Holmes J; Lean D Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019 [TBL] [Abstract][Full Text] [Related]
6. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Li Q; Wu Z; Chu B; Zhang N; Cai S; Fang J Environ Pollut; 2007 Sep; 149(2):158-64. PubMed ID: 17321652 [TBL] [Abstract][Full Text] [Related]
7. Rehabilitation options for inland waterways impacted by sulfidic sediments--field trials in a south-eastern Australian wetland. Fraser MA; Baldwin DS; Rees GN; Silvester EJ; Whitworth KL J Environ Manage; 2012 Jul; 102():71-8. PubMed ID: 22446134 [TBL] [Abstract][Full Text] [Related]
8. Potential impacts of water injection dredging on water quality and ecotoxicity in Limehouse Basin, River Thames, SE England, UK. Spencer KL; Dewhurst RE; Penna P Chemosphere; 2006 Apr; 63(3):509-21. PubMed ID: 16271380 [TBL] [Abstract][Full Text] [Related]
9. Environmental flows and water quality objectives for the River Murray. Gippel C; Jacobs T; McLeod T Water Sci Technol; 2002; 45(11):251-60. PubMed ID: 12171360 [TBL] [Abstract][Full Text] [Related]
10. Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China. Ding ZH; Liu JL; Li LQ; Lin HN; Wu H; Hu ZZ Mar Pollut Bull; 2009 Sep; 58(9):1319-25. PubMed ID: 19477465 [TBL] [Abstract][Full Text] [Related]
11. Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments. Burton ED; Bush RT; Sullivan LA Chemosphere; 2006 Aug; 64(8):1421-8. PubMed ID: 16434078 [TBL] [Abstract][Full Text] [Related]
12. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams. Johnston CA; Shmagin BA; Frost PC; Cherrier C; Larson JH; Lamberti GA; Bridgham SD Sci Total Environ; 2008 Oct; 404(2-3):326-34. PubMed ID: 18054999 [TBL] [Abstract][Full Text] [Related]
13. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Polizzotto ML; Kocar BD; Benner SG; Sampson M; Fendorf S Nature; 2008 Jul; 454(7203):505-8. PubMed ID: 18650922 [TBL] [Abstract][Full Text] [Related]
14. Effects of sediment quality on macroinvertebrates in the Sunraysia region of the Murray-Darling Rivers, Australia. Sharley DJ; Hoffmann AA; Pettigrove V Environ Pollut; 2008 Dec; 156(3):689-98. PubMed ID: 18657342 [TBL] [Abstract][Full Text] [Related]
15. Perfluorinated compounds in surficial sediments of the Ganges River and adjacent Sundarban mangrove wetland, India. Corsolini S; Sarkar SK; Guerranti C; Bhattacharya BD; Rakshit D; Jonathan MP; Godhantaraman N Mar Pollut Bull; 2012 Dec; 64(12):2829-33. PubMed ID: 23122626 [TBL] [Abstract][Full Text] [Related]
16. Iron-sulfide and trace element behaviour in sediments of Coombabah Lake, southern Moreton Bay (Australia). Burton ED; Sullivan LA; Bush RT; Powell B Mar Pollut Bull; 2008 Jul; 56(7):1353-8. PubMed ID: 18502448 [No Abstract] [Full Text] [Related]
17. Acidification of floodplains due to river level decline during drought. Mosley LM; Palmer D; Leyden E; Cook F; Zammit B; Shand P; Baker A; W Fitzpatrick R J Contam Hydrol; 2014 Jun; 161():10-23. PubMed ID: 24732706 [TBL] [Abstract][Full Text] [Related]
18. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt. Rees GN; Baldwin DS; Watson GO; Hall KC Sci Total Environ; 2010 Dec; 409(1):134-9. PubMed ID: 20934202 [TBL] [Abstract][Full Text] [Related]
19. The partitioning of Triclosan between aqueous and particulate bound phases in the Hudson River Estuary. Wilson B; Chen RF; Cantwell M; Gontz A; Zhu J; Olsen CR Mar Pollut Bull; 2009; 59(4-7):207-12. PubMed ID: 19559448 [TBL] [Abstract][Full Text] [Related]
20. Mobilisation, alteration, and redistribution of monosulfidic sediments in inland river systems. Cheetham MD; Wong VN; Bush RT; Sullivan LA; Ward NJ; Zawadzki A J Environ Manage; 2012 Dec; 112():330-9. PubMed ID: 22964040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]