BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16931054)

  • 1. Bone osteonal tissues by Raman spectral mapping: orientation-composition.
    Kazanci M; Roschger P; Paschalis EP; Klaushofer K; Fratzl P
    J Struct Biol; 2006 Dec; 156(3):489-96. PubMed ID: 16931054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman imaging of two orthogonal planes within cortical bone.
    Kazanci M; Wagner HD; Manjubala NI; Gupta HS; Paschalis E; Roschger P; Fratzl P
    Bone; 2007 Sep; 41(3):456-61. PubMed ID: 17602910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.
    Schrof S; Varga P; Galvis L; Raum K; Masic A
    J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy.
    Gamsjaeger S; Masic A; Roschger P; Kazanci M; Dunlop JW; Klaushofer K; Paschalis EP; Fratzl P
    Bone; 2010 Aug; 47(2):392-9. PubMed ID: 20450992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring differences in compositional properties of bone tissue by confocal Raman spectroscopy.
    Nyman JS; Makowski AJ; Patil CA; Masui TP; O'Quinn EC; Bi X; Guelcher SA; Nicollela DP; Mahadevan-Jansen A
    Calcif Tissue Int; 2011 Aug; 89(2):111-22. PubMed ID: 21597909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy.
    Dehring KA; Crane NJ; Smukler AR; McHugh JB; Roessler BJ; Morris MD
    Appl Spectrosc; 2006 Oct; 60(10):1134-41. PubMed ID: 17059665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy.
    Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB
    Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Earliest mineral and matrix changes in force-induced musculoskeletal disease as revealed by Raman microspectroscopic imaging.
    Tarnowski CP; Ignelzi MA; Wang W; Taboas JM; Goldstein SA; Morris MD
    J Bone Miner Res; 2004 Jan; 19(1):64-71. PubMed ID: 14753738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone tissue aging affects mineralization of cement lines.
    Milovanovic P; Vom Scheidt A; Mletzko K; Sarau G; Püschel K; Djuric M; Amling M; Christiansen S; Busse B
    Bone; 2018 May; 110():187-193. PubMed ID: 29427789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae.
    Hofmann T; Heyroth F; Meinhard H; Fränzel W; Raum K
    J Biomech; 2006; 39(12):2282-94. PubMed ID: 16144702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the increasing fragility of human teeth with age: a deep-UV resonance Raman study.
    Ager JW; Nalla RK; Balooch G; Kim G; Pugach M; Habelitz S; Marshall GW; Kinney JH; Ritchie RO
    J Bone Miner Res; 2006 Dec; 21(12):1879-87. PubMed ID: 17002558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone chemical structure response to mechanical stress studied by high pressure Raman spectroscopy.
    de Carmejane O; Morris MD; Davis MK; Stixrude L; Tecklenburg M; Rajachar RM; Kohan DH
    Calcif Tissue Int; 2005 Mar; 76(3):207-13. PubMed ID: 15742234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy.
    Masic A; Bertinetti L; Schuetz R; Galvis L; Timofeeva N; Dunlop JW; Seto J; Hartmann MA; Fratzl P
    Biomacromolecules; 2011 Nov; 12(11):3989-96. PubMed ID: 21954830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between the v₂PO₄/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone.
    Roschger A; Gamsjaeger S; Hofstetter B; Masic A; Blouin S; Messmer P; Berzlanovich A; Paschalis EP; Roschger P; Klaushofer K; Fratzl P
    J Biomed Opt; 2014 Jun; 19(6):065002. PubMed ID: 24919447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarized Raman microspectroscopy on intact human hair.
    Ackermann KR; Koster J; Schlücker S
    J Biophotonics; 2008 Oct; 1(5):419-24. PubMed ID: 19343665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The associations between mineral crystallinity and the mechanical properties of human cortical bone.
    Yerramshetty JS; Akkus O
    Bone; 2008 Mar; 42(3):476-82. PubMed ID: 18187375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping.
    Kozielski M; Buchwald T; Szybowicz M; Błaszczak Z; Piotrowski A; Ciesielczyk B
    J Mater Sci Mater Med; 2011 Jul; 22(7):1653-61. PubMed ID: 21626309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization.
    Ramasamy JG; Akkus O
    J Biomech; 2007; 40(4):910-8. PubMed ID: 16678186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.