BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16931177)

  • 1. Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions.
    Kohno T; Yokota J
    DNA Repair (Amst); 2006 Sep; 5(9-10):1273-81. PubMed ID: 16931177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular processes of chromosome 9p21 deletions in human cancers.
    Sasaki S; Kitagawa Y; Sekido Y; Minna JD; Kuwano H; Yokota J; Kohno T
    Oncogene; 2003 Jun; 22(24):3792-8. PubMed ID: 12802286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells.
    Florl AR; Schulz WA
    Genes Chromosomes Cancer; 2003 Jun; 37(2):141-8. PubMed ID: 12696062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homozygous deletions of CDKN2A caused by alternative mechanisms in various human cancer cell lines.
    Raschke S; Balz V; Efferth T; Schulz WA; Florl AR
    Genes Chromosomes Cancer; 2005 Jan; 42(1):58-67. PubMed ID: 15495191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the chromosome 9p21 region susceptible to DNA double-strand breaks in human cells in vivo by restriction enzyme transfer.
    Sato M; Sasaki H; Kazui T; Yokota J; Kohno T
    Oncogene; 2005 Sep; 24(40):6108-18. PubMed ID: 16007206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct mechanisms of nonhomologous end joining in the repair of site-directed chromosomal breaks with noncomplementary and complementary ends.
    Willers H; Husson J; Lee LW; Hubbe P; Gazemeier F; Powell SN; Dahm-Daphi J
    Radiat Res; 2006 Oct; 166(4):567-74. PubMed ID: 17007549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two regions of homozygous deletion clusters at chromosome band 9p21 in human lung cancer.
    Hamada K; Kohno T; Takahashi M; Yamazaki M; Yamazaki M; Tashiro H; Sugawara C; Ohwada S; Sekido Y; Minna JD; Yokota J
    Genes Chromosomes Cancer; 2000 Mar; 27(3):308-18. PubMed ID: 10679921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin structural elements and chromosomal translocations in leukemia.
    Zhang Y; Rowley JD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1282-97. PubMed ID: 16893685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal aberrations induced by double strand DNA breaks.
    Varga T; Aplan PD
    DNA Repair (Amst); 2005 Aug; 4(9):1038-46. PubMed ID: 15935739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks.
    Povirk LF
    DNA Repair (Amst); 2006 Sep; 5(9-10):1199-212. PubMed ID: 16822725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive differences in DNA double-strand break repair between normal urothelial and urothelial carcinoma cells.
    Windhofer F; Krause S; Hader C; Schulz WA; Florl AR
    Mutat Res; 2008 Feb; 638(1-2):56-65. PubMed ID: 17928011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and characterization of the common fragile site FRA6F harboring a replicative senescence gene and frequently deleted in human tumors.
    Morelli C; Karayianni E; Magnanini C; Mungall AJ; Thorland E; Negrini M; Smith DI; Barbanti-Brodano G
    Oncogene; 2002 Oct; 21(47):7266-76. PubMed ID: 12370818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping a putative tumor suppressor gene on chromosome 9 bands p21-p22 with microdissection probes.
    Bohlander SK; Dreyling MH; Hagos F; Sveen L; Olopade OI; Díaz MO
    Genomics; 1994 Nov; 24(2):211-7. PubMed ID: 7535286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining.
    Zhuang J; Zhang J; Willers H; Wang H; Chung JH; van Gent DC; Hallahan DE; Powell SN; Xia F
    Cancer Res; 2006 Feb; 66(3):1401-8. PubMed ID: 16452195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion, rearrangement, and gene conversion; genetic consequences of chromosomal double-strand breaks in human cells.
    Honma M; Izumi M; Sakuraba M; Tadokoro S; Sakamoto H; Wang W; Yatagai F; Hayashi M
    Environ Mol Mutagen; 2003; 42(4):288-98. PubMed ID: 14673874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells.
    Weinstock DM; Richardson CA; Elliott B; Jasin M
    DNA Repair (Amst); 2006 Sep; 5(9-10):1065-74. PubMed ID: 16815104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease.
    Angeloni D
    Brief Funct Genomic Proteomic; 2007 Mar; 6(1):19-39. PubMed ID: 17525073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Premature chromosome condensation reveals DNA-PK independent pathways of chromosome break repair.
    Terzoudi GI; Singh SK; Pantelias GE; Iliakis G
    Int J Oncol; 2008 Oct; 33(4):871-9. PubMed ID: 18813802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA double-strand break repair and chromosome translocations.
    Agarwal S; Tafel AA; Kanaar R
    DNA Repair (Amst); 2006 Sep; 5(9-10):1075-81. PubMed ID: 16798112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.