These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1693141)

  • 1. Two-compartment model for rabbit skin organ culture.
    Rutten AA; Béquet-Passelecq BG; Koëter HB
    In Vitro Cell Dev Biol; 1990 Apr; 26(4):353-60. PubMed ID: 1693141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the differentiated phenotype of an organotypic model of skin derived from human keratinocytes and dried porcine dermis.
    Matousková E; McKay I; Povýsil C; Königová R; Chaloupková A; Veselý P
    Folia Biol (Praha); 1998; 44(2):59-66. PubMed ID: 10730858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin C enhances differentiation of a continuous keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and functional permeability barrier.
    Pasonen-Seppänen S; Suhonen TM; Kirjavainen M; Suihko E; Urtti A; Miettinen M; Hyttinen M; Tammi M; Tammi R
    Histochem Cell Biol; 2001 Oct; 116(4):287-97. PubMed ID: 11702187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term organ culture of rabbit skin: effect of EGF on epidermal structure in vitro.
    Kondo S; Hozumi Y; Aso K
    J Invest Dermatol; 1990 Oct; 95(4):397-402. PubMed ID: 1698885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully differentiating epidermal model with extended viability: development and partial characterization.
    Chapman SJ; Walsh A; Beckett E; Vickers CF
    J Invest Dermatol; 1989 Dec; 93(6):762-8. PubMed ID: 2584741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural and immunocytochemical detection of keratins and extracellular matrix proteins in lizard skin cultured in vitro.
    Alibardi L; Polazzi E
    Tissue Cell; 2012 Apr; 44(2):122-31. PubMed ID: 22325741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of all-trans retinoic acid and Ca++ on human skin in organ culture.
    Varani J; Fligiel SE; Schuger L; Perone P; Inman D; Griffiths CE; Voorhees JJ
    Am J Pathol; 1993 Jan; 142(1):189-98. PubMed ID: 8424454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidermal growth factor and temperature regulate keratinocyte differentiation.
    Ponec M; Gibbs S; Weerheim A; Kempenaar J; Mulder A; Mommaas AM
    Arch Dermatol Res; 1997 May; 289(6):317-26. PubMed ID: 9209676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic expression of epidermal cells in vitro: a review.
    Holbrook KA; Hennings H
    J Invest Dermatol; 1983 Jul; 81(1 Suppl):11s-24s. PubMed ID: 6345688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human epidermis reconstructed on synthetic membrane: influence of experimental conditions on terminal differentiation.
    Noël-Hudson MS; Dusser I; Collober I; Muriel MP; Bonté F; Meybeck A; Font J; Wepierre J
    In Vitro Cell Dev Biol Anim; 1995; 31(7):508-15. PubMed ID: 8528499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell culture from lizard skin: a tool for the study of epidermal differentiation.
    Polazzi E; Alibardi L
    Tissue Cell; 2011 Dec; 43(6):350-8. PubMed ID: 21872288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Culture of keratinocytes for transplantation without the need of feeder layer cells.
    Coolen NA; Verkerk M; Reijnen L; Vlig M; van den Bogaerdt AJ; Breetveld M; Gibbs S; Middelkoop E; Ulrich MM
    Cell Transplant; 2007; 16(6):649-61. PubMed ID: 17912956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface.
    Rosdy M; Clauss LC
    J Invest Dermatol; 1990 Oct; 95(4):409-14. PubMed ID: 1698886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of beta-keratins and associated proteins in adult and regenerating epidermis of lizards.
    Alibardi L; Spisni E; Frassanito AG; Toni M
    Tissue Cell; 2004 Oct; 36(5):333-49. PubMed ID: 15385150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keratin alterations during embryonic epidermal differentiation: a presage of adult epidermal maturation.
    Banks-Schlegel SP
    J Cell Biol; 1982 Jun; 93(3):551-9. PubMed ID: 6181071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degenerative and regenerative changes in epidermal organ culture: a morphological study with reference to membrane-coating granules.
    Chapman SJ; Vickers CF
    In Vitro Cell Dev Biol; 1988 Nov; 24(11):1092-8. PubMed ID: 3192505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidermal morphogenesis in an in-vitro model using a fibroblasts-embedded collagen scaffold.
    Huang YC; Wang TW; Sun JS; Lin FH
    J Biomed Sci; 2005 Dec; 12(6):855-67. PubMed ID: 16228295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphometric analysis of human epidermis treated with testosterone and dehydroepiandrosterone in organ culture.
    Tammi R; Santti R
    Arch Dermatol Res; 1989; 281(6):417-23. PubMed ID: 2480753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Normalization of epidermal calcium distribution profile in reconstructed human epidermis is related to improvement of terminal differentiation and stratum corneum barrier formation.
    Vicanová J; Boelsma E; Mommaas AM; Kempenaar JA; Forslind B; Pallon J; Egelrud T; Koerten HK; Ponec M
    J Invest Dermatol; 1998 Jul; 111(1):97-106. PubMed ID: 9665394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-modulated desmosome formation and sodium-regulated keratinization in frog skin cultures.
    Denèfle JP; Lechaire JP
    Tissue Cell; 1986; 18(2):285-95. PubMed ID: 2422783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.