These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16931561)

  • 21. A comparison of the microcirculation in the rat spinotrapezius and diaphragm muscles.
    Kindig CA; Poole DC
    Microvasc Res; 1998 May; 55(3):249-59. PubMed ID: 9657925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle tenderness and peak torque changes after downhill running following a prior bout of isokinetic eccentric exercise.
    Eston RG; Finney S; Baker S; Baltzopoulos V
    J Sports Sci; 1996 Aug; 14(4):291-9. PubMed ID: 8887208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endurance training-induced increases in expiratory muscle oxidative capacity.
    Grinton S; Powers SK; Lawler J; Criswell D; Dodd S; Edwards W
    Med Sci Sports Exerc; 1992 May; 24(5):551-5. PubMed ID: 1533265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gradual downhill running improves age-related skeletal muscle and bone weakness: implication of autophagy and bone morphogenetic proteins.
    Kim JS; Lee YH; Yi HK
    Exp Physiol; 2016 Dec; 101(12):1528-1540. PubMed ID: 27641238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endurance training restores peritoneal macrophage function in post-MI congestive heart failure rats.
    Batista ML; Santos RV; Oliveira EM; Seelaender MC; Costa Rosa LF
    J Appl Physiol (1985); 2007 May; 102(5):2033-9. PubMed ID: 17255373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle.
    McAllister RM; Jasperse JL; Laughlin MH
    J Appl Physiol (1985); 2005 Feb; 98(2):753-61. PubMed ID: 15448126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice.
    Ferreira JC; Bacurau AV; Bueno CR; Cunha TC; Tanaka LY; Jardim MA; Ramires PR; Brum PC
    Exp Biol Med (Maywood); 2010 Apr; 235(4):497-505. PubMed ID: 20407082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of aging on microvascular oxygen pressures in rat skeletal muscle.
    Behnke BJ; Delp MD; Dougherty PJ; Musch TI; Poole DC
    Respir Physiol Neurobiol; 2005 Apr; 146(2-3):259-68. PubMed ID: 15766914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Skeletal muscle buffering capacity is higher in the superficial vastus than in the soleus of spontaneously running rats.
    Weston AR; Wilson GR; Noakes TD; Myburgh KH
    Acta Physiol Scand; 1996 Jun; 157(2):211-6. PubMed ID: 8800361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age is no barrier to muscle structural, biochemical and angiogenic adaptations to training up to 24 months in female rats.
    Rossiter HB; Howlett RA; Holcombe HH; Entin PL; Wagner HE; Wagner PD
    J Physiol; 2005 Jun; 565(Pt 3):993-1005. PubMed ID: 15845588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.
    Copp SW; Inagaki T; White MJ; Hirai DM; Ferguson SK; Holdsworth CT; Sims GE; Poole DC; Musch TI
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(2):H206-14. PubMed ID: 23144313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?
    Nordby P; Saltin B; Helge JW
    Scand J Med Sci Sports; 2006 Jun; 16(3):209-14. PubMed ID: 16643200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of brain macrophages on IL-1beta and fatigue following eccentric exercise-induced muscle damage.
    Carmichael MD; Davis JM; Murphy EA; Carson JA; Van Rooijen N; Mayer E; Ghaffar A
    Brain Behav Immun; 2010 May; 24(4):564-8. PubMed ID: 20051263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Octacosanol supplementation increases running endurance time and improves biochemical parameters after exhaustion in trained rats.
    Kim H; Park S; Han DS; Park T
    J Med Food; 2003; 6(4):345-51. PubMed ID: 14977443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased peak oxygen consumption of trained muscle requires increased electron flux capacity.
    Robinson DM; Ogilvie RW; Tullson PC; Terjung RL
    J Appl Physiol (1985); 1994 Oct; 77(4):1941-52. PubMed ID: 7836222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oestrogen influence on myogenic satellite cells following downhill running in male rats: a preliminary study.
    Tiidus PM; Deller M; Liu XL
    Acta Physiol Scand; 2005 May; 184(1):67-72. PubMed ID: 15847645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of antioxidants on microvascular oxygenation and blood flow in skeletal muscle of young rats.
    Copp SW; Ferreira LF; Herspring KF; Hirai DM; Snyder BS; Poole DC; Musch TI
    Exp Physiol; 2009 Sep; 94(9):961-71. PubMed ID: 19502293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats.
    Venditti P; Di Meo S
    Int J Sports Med; 1997 Oct; 18(7):497-502. PubMed ID: 9414071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-term exercise training improves diaphragm antioxidant capacity and endurance.
    Vincent HK; Powers SK; Stewart DJ; Demirel HA; Shanely RA; Naito H
    Eur J Appl Physiol; 2000 Jan; 81(1-2):67-74. PubMed ID: 10552269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of endurance exercise training on distribution of vascular adaptations in rat skeletal muscle.
    Sexton WL; Laughlin MH
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H483-90. PubMed ID: 8141348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.