BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16932776)

  • 41. Tissue-specific expression of monocarboxylate transporters during fasting in mice.
    Schutkowski A; Wege N; Stangl GI; König B
    PLoS One; 2014; 9(11):e112118. PubMed ID: 25390336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunoreactivity of receptor and transporters for lactate located in astrocytes and epithelial cells of choroid plexus of human brain.
    Murakami R; Chiba Y; Nishi N; Matsumoto K; Wakamatsu K; Yanase K; Uemura N; Nonaka W; Ueno M
    Neurosci Lett; 2021 Jan; 741():135479. PubMed ID: 33212210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes.
    Bröer S; Bröer A; Schneider HP; Stegen C; Halestrap AP; Deitmer JW
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):529-35. PubMed ID: 10417314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitric oxide reduces astrocytic lactate production and induces neuronal vulnerability in stroke-prone spontaneously hypertensive rats.
    Yamagata K; Tagami M; Yamori Y
    Glia; 2008 Mar; 56(4):387-93. PubMed ID: 18186081
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase.
    Laughton JD; Bittar P; Charnay Y; Pellerin L; Kovari E; Magistretti PJ; Bouras C
    BMC Neurosci; 2007 May; 8():35. PubMed ID: 17521432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distribution and possible roles of aquaporin 9 in the brain.
    Badaut J; Regli L
    Neuroscience; 2004; 129(4):971-81. PubMed ID: 15561412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain.
    Pierre K; Magistretti PJ; Pellerin L
    J Cereb Blood Flow Metab; 2002 May; 22(5):586-95. PubMed ID: 11973431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons.
    Bröer S; Rahman B; Pellegri G; Pellerin L; Martin JL; Verleysdonk S; Hamprecht B; Magistretti PJ
    J Biol Chem; 1997 Nov; 272(48):30096-102. PubMed ID: 9374487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction.
    Cortés-Campos C; Elizondo R; Llanos P; Uranga RM; Nualart F; García MA
    PLoS One; 2011 Jan; 6(1):e16411. PubMed ID: 21297988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain energetics (thought needs food).
    Pellerin L
    Curr Opin Clin Nutr Metab Care; 2008 Nov; 11(6):701-5. PubMed ID: 18971641
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of monocarboxylate transport in human kidney HK-2 cells.
    Wang Q; Lu Y; Yuan M; Darling IM; Repasky EA; Morris ME
    Mol Pharm; 2006; 3(6):675-85. PubMed ID: 17140255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain.
    McKenna MC
    J Neurosci Res; 2007 Nov; 85(15):3347-58. PubMed ID: 17847118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation.
    Fayol L; Baud O; Monier A; Pellerin L; Magistretti P; Evrard P; Verney C
    Brain Res Dev Brain Res; 2004 Jan; 148(1):69-76. PubMed ID: 14757520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased expression of monocarboxylate transporter 1 after acute ischemia of isolated, perfused mouse hearts.
    Martinov V; Rizvi SM; Weiseth SA; Sagave J; Bergersen LH; Valen G
    Life Sci; 2009 Aug; 85(9-10):379-85. PubMed ID: 19604494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cellular basis of neurovascular metabolic coupling.
    Paemeleire K
    Acta Neurol Belg; 2002 Dec; 102(4):153-7. PubMed ID: 12534240
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Control of supply and use of energy substrates in the encephalon].
    Schelp AO; Burini RC
    Arq Neuropsiquiatr; 1995 Sep; 53(3-B):690-7. PubMed ID: 8585833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila.
    González-Gutiérrez A; Ibacache A; Esparza A; Barros LF; Sierralta J
    Glia; 2020 Jun; 68(6):1213-1227. PubMed ID: 31876077
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles.
    Hashimoto T; Hussien R; Cho HS; Kaufer D; Brooks GA
    PLoS One; 2008 Aug; 3(8):e2915. PubMed ID: 18698340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain.
    Ramírez BG; Rodrigues TB; Violante IR; Cruz F; Fonseca LL; Ballesteros P; Castro MM; García-Martín ML; Cerdán S
    J Neurosci Res; 2007 Nov; 85(15):3244-53. PubMed ID: 17600826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The monocarboxylate transporter family--Structure and functional characterization.
    Halestrap AP
    IUBMB Life; 2012 Jan; 64(1):1-9. PubMed ID: 22131303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.