BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16933796)

  • 1. Differential biohydrogenation and isomerization of [U-(13)C]oleic and [1-(13)C]oleic acids by mixed ruminal microbes.
    Mosley EE; Nudda A; Corato A; Rossi E; Jenkins T; McGuire MA
    Lipids; 2006 May; 41(5):513-7. PubMed ID: 16933796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial biohydrogenation of oleic acid to trans isomers in vitro.
    Mosley EE; Powell GL; Riley MB; Jenkins TC
    J Lipid Res; 2002 Feb; 43(2):290-6. PubMed ID: 11861671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes.
    Laverroux S; Glasser F; Gillet M; Joly C; Doreau M
    Lipids; 2011 Sep; 46(9):843-50. PubMed ID: 21706384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen.
    van de Vossenberg JL; Joblin KN
    Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by ruminal microbes.
    Proell JM; Mosley EE; Powell GL; Jenkins TC
    J Lipid Res; 2002 Dec; 43(12):2072-6. PubMed ID: 12454268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dilution rate and pH effects on the conversion of oleic acid to trans C18:1 positional isomers in continuous culture.
    AbuGhazaleh AA; Riley MB; Thies EE; Jenkins TC
    J Dairy Sci; 2005 Dec; 88(12):4334-41. PubMed ID: 16291625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets.
    Duckett SK; Andrae JG; Owens FN
    J Anim Sci; 2002 Dec; 80(12):3353-60. PubMed ID: 12542177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes.
    Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T
    J Dairy Sci; 2006 Mar; 89(3):1043-51. PubMed ID: 16507700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hydrogenation of gamma-linolenic acid by pure cultures of two rumen bacteria.
    Kemp P; Lander DJ
    Biochem J; 1983 Nov; 216(2):519-22. PubMed ID: 6318740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biohydrogenation of erucic acid (22:1 n-9 cis) in artificial rumen. I). Effect of octadecapolyenoic fatty acids and the incubation period].
    Borgatti AR; Trigari G
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):205-11. PubMed ID: 553585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria.
    Nam IS; Garnsworthy PC
    J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biohydrogenation of erucic acid (22:1 n-9 cis) in an "artificial rumen". II) Effect of pH, potential hydrogen donors and type of anaerobiosis].
    Borgatti AR; Trigari G
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):212-8. PubMed ID: 45245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BIOHYDROGENATION OF UNSATURATED FATTY ACIDS BY RUMEN BACTERIA.
    POLAN CE; MCNEILL JJ; TOVE SB
    J Bacteriol; 1964 Oct; 88(4):1056-64. PubMed ID: 14219019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18.
    Jeyanathan J; Escobar M; Wallace RJ; Fievez V; Vlaeminck B
    BMC Microbiol; 2016 Jun; 16():104. PubMed ID: 27283157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rumen ciliate protozoa contain high concentrations of conjugated linoleic acids and vaccenic acid, yet do not hydrogenate linoleic acid or desaturate stearic acid.
    Devillard E; McIntosh FM; Newbold CJ; Wallace RJ
    Br J Nutr; 2006 Oct; 96(4):697-704. PubMed ID: 17010229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
    Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ
    J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro.
    Li D; Wang JQ; Bu DP
    BMC Res Notes; 2012 Feb; 5():97. PubMed ID: 22336099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The hydrogenation of some cis- and trans-octadecenoic acids to stearic acid by a rumen Fusocillus sp.
    Kemp P; Lander DJ; Gunstone FD
    Br J Nutr; 1984 Jul; 52(1):165-70. PubMed ID: 6743636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria.
    Hudson JA; MacKenzie CA; Joblin KN
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):1-6. PubMed ID: 8579822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the formation of 10-hydroxystearic acid from oleic acid by a ruminal strain of Enterococcus faecalis.
    Hudson JA; Mackenzie CA; Joblin KN
    Appl Microbiol Biotechnol; 1996 Apr; 45(3):404-7. PubMed ID: 8639306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.