BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16934292)

  • 1. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
    Thurlkill RL; Grimsley GR; Scholtz JM; Pace CN
    J Mol Biol; 2006 Sep; 362(3):594-604. PubMed ID: 16934292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asp79 makes a large, unfavorable contribution to the stability of RNase Sa.
    Trevino SR; Gokulan K; Newsom S; Thurlkill RL; Shaw KL; Mitkevich VA; Makarov AA; Sacchettini JC; Scholtz JM; Pace CN
    J Mol Biol; 2005 Dec; 354(4):967-78. PubMed ID: 16288913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tyrosine hydrogen bonds make a large contribution to protein stability.
    Pace CN; Horn G; Hebert EJ; Bechert J; Shaw K; Urbanikova L; Scholtz JM; Sevcik J
    J Mol Biol; 2001 Sep; 312(2):393-404. PubMed ID: 11554795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1.
    Giletto A; Pace CN
    Biochemistry; 1999 Oct; 38(40):13379-84. PubMed ID: 10529213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical relationships between protein structure and carboxyl pKa values in proteins.
    Forsyth WR; Antosiewicz JM; Robertson AD
    Proteins; 2002 Aug; 48(2):388-403. PubMed ID: 12112705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2).
    Laurents DV; Huyghues-Despointes BM; Bruix M; Thurlkill RL; Schell D; Newsom S; Grimsley GR; Shaw KL; TreviƱo S; Rico M; Briggs JM; Antosiewicz JM; Scholtz JM; Pace CN
    J Mol Biol; 2003 Jan; 325(5):1077-92. PubMed ID: 12527309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing protein stability by altering long-range coulombic interactions.
    Grimsley GR; Shaw KL; Fee LR; Alston RW; Huyghues-Despointes BM; Thurlkill RL; Scholtz JM; Pace CN
    Protein Sci; 1999 Sep; 8(9):1843-9. PubMed ID: 10493585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3.
    Pace CN; Hebert EJ; Shaw KL; Schell D; Both V; Krajcikova D; Sevcik J; Wilson KS; Dauter Z; Hartley RW; Grimsley GR
    J Mol Biol; 1998 May; 279(1):271-86. PubMed ID: 9636716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.
    Albeck S; Unger R; Schreiber G
    J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding is the prime determinant of carboxyl pKa values at the N-termini of alpha-helices.
    Porter MA; Hall JR; Locke JC; Jensen JH; Molina PA
    Proteins; 2006 May; 63(3):621-35. PubMed ID: 16447255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of the structural and functional role of a conserved hydration site in RNase T1.
    Langhorst U; Loris R; Denisov VP; Doumen J; Roose P; Maes D; Halle B; Steyaert J
    Protein Sci; 1999 Apr; 8(4):722-30. PubMed ID: 10211818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of hydrogen bonding to the conformational stability of ribonuclease T1.
    Shirley BA; Stanssens P; Hahn U; Pace CN
    Biochemistry; 1992 Jan; 31(3):725-32. PubMed ID: 1731929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange.
    Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M
    Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of hydrogen bond networks and dynamics in positive and negative cooperative stabilization of a protein.
    Redzic JS; Bowler BE
    Biochemistry; 2005 Mar; 44(8):2900-8. PubMed ID: 15723532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completely buried, non-ion-paired glutamic acid contributes favorably to the conformational stability of pyrrolidone carboxyl peptidases from hyperthermophiles.
    Kaushik JK; Iimura S; Ogasahara K; Yamagata Y; Segawa S; Yutani K
    Biochemistry; 2006 Jun; 45(23):7100-12. PubMed ID: 16752900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pseudomolecule method and the structure of globular proteins. II. The example of ribonuclease F1 and T1.
    Peters D; Peters J
    Biopolymers; 2001 Nov; 59(6):402-10. PubMed ID: 11598875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-barrier hydrogen bonds and enzymatic catalysis.
    Cleland WW
    Arch Biochem Biophys; 2000 Oct; 382(1):1-5. PubMed ID: 11051090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.