These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16934313)

  • 21. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium.
    Zeinali M; Vossoughi M; Ardestani SK
    J Appl Microbiol; 2008 Aug; 105(2):398-406. PubMed ID: 18312570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Search for active psychrotrophic microbial oil degraders and their characterization].
    Pyrchenkova IA; Gafarov AB; Puntus IF; Filonov AE; Boronin AM
    Prikl Biokhim Mikrobiol; 2006; 42(3):298-305. PubMed ID: 16878545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Henry's law constants of chlorinated solvents at elevated temperatures.
    Chen F; Freedman DL; Falta RW; Murdoch LC
    Chemosphere; 2012 Jan; 86(2):156-65. PubMed ID: 22071373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions.
    Wong JW; Fang M; Zhao Z; Xing B
    J Environ Qual; 2004; 33(6):2015-25. PubMed ID: 15537923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost.
    Miyatake F; Iwabuchi K
    Bioresour Technol; 2005 Nov; 96(16):1821-5. PubMed ID: 16051089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Salting-in and salting-out effects of ionic and neutral osmotica on limonene and linalool Henry's law constants and octanol/water partition coefficients.
    Copolovici L; Niinemets U
    Chemosphere; 2007 Sep; 69(4):621-9. PubMed ID: 17462701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils.
    Lee S
    J Hazard Mater; 2007 Jun; 145(1-2):17-22. PubMed ID: 17126487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin.
    Garon D; Sage L; Wouessidjewe D; Seigle-Murandi F
    Chemosphere; 2004 Jul; 56(2):159-66. PubMed ID: 15120562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene.
    Shin KH; Kim KW; Seagren EA
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):336-43. PubMed ID: 15309342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inverse temperature dependence of Henry's law coefficients for volatile organic compounds in supercooled water.
    Sieg K; Starokozhev E; Schmidt MU; PĆ¼ttmann W
    Chemosphere; 2009 Sep; 77(1):8-14. PubMed ID: 19604535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of Henry's law coefficients for chlorine-containing C1 and C2 hydrocarbons.
    Warneck P
    Chemosphere; 2007 Sep; 69(3):347-61. PubMed ID: 17590409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem.
    Hong YW; Yuan DX; Lin QM; Yang TL
    Mar Pollut Bull; 2008 Aug; 56(8):1400-5. PubMed ID: 18597790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35.
    Bernardez LA
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):415-24. PubMed ID: 18797932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct link between fluoranthene biodegradation and the mobility and sequestration of its residues during aging.
    Vessigaud S; Perrin-Ganier C; Belkessam L; Denys S; Schiavon M
    J Environ Qual; 2007; 36(5):1412-9. PubMed ID: 17766820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene.
    Jin D; Jiang X; Jing X; Ou Z
    J Hazard Mater; 2007 Jun; 144(1-2):215-21. PubMed ID: 17113708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extraction of phenanthrene and fluoranthene from contaminated sand using palm kernel and soybean oils.
    Von Lau E; Gan S; Ng HK
    J Environ Manage; 2012 Sep; 107():124-30. PubMed ID: 22595079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of malathion by Lysinibacillus sp. isolated from soil.
    Singh B; Kaur J; Singh K
    Biotechnol Lett; 2012 May; 34(5):863-7. PubMed ID: 22476547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitric oxide-dependent biodegradation of phenanthrene and fluoranthene: The co-occurrence of anaerobic and intra-aerobic pathways.
    Zhang D; Han X; Zhou S; Yuan S; Lu P; Peng S
    Sci Total Environ; 2021 Mar; 760():144032. PubMed ID: 33348150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.