These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
945 related articles for article (PubMed ID: 16934451)
1. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Martín C; Marcet M; Almazán O; Jönsson LJ Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
3. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Rao RS; Jyothi ChP; Prakasham RS; Sarma PN; Rao LV Bioresour Technol; 2006 Oct; 97(15):1974-8. PubMed ID: 16242318 [TBL] [Abstract][Full Text] [Related]
4. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
5. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
6. Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Hernández-Salas JM; Villa-Ramírez MS; Veloz-Rendón JS; Rivera-Hernández KN; González-César RA; Plascencia-Espinosa MA; Trejo-Estrada SR Bioresour Technol; 2009 Feb; 100(3):1238-45. PubMed ID: 19000863 [TBL] [Abstract][Full Text] [Related]
7. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Katahira S; Mizuike A; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564 [TBL] [Abstract][Full Text] [Related]
8. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Lu Y; Warner R; Sedlak M; Ho N; Mosier NS Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980 [TBL] [Abstract][Full Text] [Related]
9. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
10. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
11. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol. Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302 [TBL] [Abstract][Full Text] [Related]
12. [Utilization of sugar cane bagasse hydrolysates for xylitol production by yeast]. Zhang HR; Zeng JZ; He CX; Fang H; Cai AH Sheng Wu Gong Cheng Xue Bao; 2002 Nov; 18(6):724-8. PubMed ID: 12674644 [TBL] [Abstract][Full Text] [Related]
13. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950 [TBL] [Abstract][Full Text] [Related]
14. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417 [TBL] [Abstract][Full Text] [Related]
15. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110 [TBL] [Abstract][Full Text] [Related]
16. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Keating JD; Panganiban C; Mansfield SD Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of growth and ethanol production on different carbon substrates using genetically engineered xylose-fermenting yeast. Govindaswamy S; Vane LM Bioresour Technol; 2007 Feb; 98(3):677-85. PubMed ID: 16563746 [TBL] [Abstract][Full Text] [Related]
18. Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Crespo CF; Badshah M; Alvarez MT; Mattiasson B Bioresour Technol; 2012 Jan; 103(1):186-91. PubMed ID: 22055102 [TBL] [Abstract][Full Text] [Related]
19. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
20. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. Casey E; Sedlak M; Ho NW; Mosier NS FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]