These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16934472)

  • 1. Is the periplasm continuous in filamentous multicellular cyanobacteria?
    Flores E; Herrero A; Wolk CP; Maldener I
    Trends Microbiol; 2006 Oct; 14(10):439-43. PubMed ID: 16934472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium.
    Mariscal V; Herrero A; Flores E
    Mol Microbiol; 2007 Aug; 65(4):1139-45. PubMed ID: 17645442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-cell communication in filamentous cyanobacteria.
    Haselkorn R
    Mol Microbiol; 2008 Nov; 70(4):783-5. PubMed ID: 18990180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ultrastructural organization of trichomes of a new group of multicellular gram-negative bacteria].
    Duda VI; Makar'eva ED; Shishkina EI
    Mikrobiologiia; 1977; 46(3):500-5. PubMed ID: 895559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections.
    Zuber B; Haenni M; Ribeiro T; Minnig K; Lopes F; Moreillon P; Dubochet J
    J Bacteriol; 2006 Sep; 188(18):6652-60. PubMed ID: 16952957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space.
    Matias VR; Beveridge TJ
    Mol Microbiol; 2005 Apr; 56(1):240-51. PubMed ID: 15773993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electron microscopic study of dark and photo-oxidative degradation of the blue-green alga Anabaena variabilis].
    Baulina OI; Korzhenevskaia TG; Gusev MV
    Mikrobiologiia; 1977; 46(1):128-33. PubMed ID: 404506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell division in blue-green bacteria: stimulation of localized regions of peptidoglycan metabolism by ethanol.
    Sturgeon JA; Aldrich HA; Ingram LO
    Microbios; 1975; 12(49):143-54. PubMed ID: 810643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cell wall in heterocyst formation by Anabaena sp. PCC 7120.
    Nicolaisen K; Hahn A; Schleiff E
    J Basic Microbiol; 2009 Feb; 49(1):5-24. PubMed ID: 19253332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrillar array in the cell wall of a gliding filamentous cyanobacterium.
    Adams DG; Ashworth D; Nelmes B
    J Bacteriol; 1999 Feb; 181(3):884-92. PubMed ID: 9922252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrastructural organization and development cycle of soil ultramicrobacteria belonging to the class Alphaproteobacteria].
    Duda VI; Suzina NE; Akimov VI; Vaĭnshteĭn MB; Dmitriev VV; Barinova ES; Abashina TN; Oleĭnikov RR; Esikova TZ; Boronin AM
    Mikrobiologiia; 2007; 76(5):652-61. PubMed ID: 18069326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus.
    Matias VR; Beveridge TJ
    J Bacteriol; 2006 Feb; 188(3):1011-21. PubMed ID: 16428405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multicellular nature of filamentous heterocyst-forming cyanobacteria.
    Herrero A; Stavans J; Flores E
    FEMS Microbiol Rev; 2016 Nov; 40(6):831-854. PubMed ID: 28204529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120.
    Zhang LC; Chen YF; Chen WL; Zhang CC
    Mol Microbiol; 2008 Nov; 70(4):814-23. PubMed ID: 18990181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Propagation of electrical potential changes in filamentous cyanobacteria].
    Levin SA; Potapova TV; Skulachev VP; Chaĭlakhian LM
    Biofizika; 1982; 27(2):280-4. PubMed ID: 6803847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale visualization of a fibrillar array in the cell wall of filamentous cyanobacteria and its implications for gliding motility.
    Read N; Connell S; Adams DG
    J Bacteriol; 2007 Oct; 189(20):7361-6. PubMed ID: 17693519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the envelope architecture of E. coli using two methods: CEMOVIS and cryo-electron tomography.
    Kishimoto-Okada A; Murakami S; Ito Y; Horii N; Furukawa H; Takagi J; Iwasaki K
    J Electron Microsc (Tokyo); 2010; 59(5):419-26. PubMed ID: 20630858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond laser disruption of filamentous cyanobacteria unveils dissimilar cellular stability between heterocysts and vegetative cells.
    Arellano JB; Vázquez de Aldana JR; Méndez C; González-Pérez S; Moreno P; Roso L
    Photochem Photobiol; 2008; 84(6):1576-82. PubMed ID: 18643959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fine structure of the cell wall in various Cyanophyceae].
    Golecki JR
    Zentralbl Bakteriol Orig A; 1974; 228(1):189-92. PubMed ID: 4154664
    [No Abstract]   [Full Text] [Related]  

  • 20. Ultrastructural changes of sparkling wine lees during long-term aging in real enological conditions.
    Tudela R; Gallardo-Chacón JJ; Rius N; López-Tamames E; Buxaderas S
    FEMS Yeast Res; 2012 Jun; 12(4):466-76. PubMed ID: 22404819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.