These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 16934834)

  • 1. Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region.
    Ndjonka D; Bell CE
    J Mol Biol; 2006 Sep; 362(3):479-89. PubMed ID: 16934834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The preferred substrate for RecA-mediated cleavage of bacteriophage 434 repressor is the DNA-bound dimer.
    Pawlowski DR; Koudelka GB
    J Bacteriol; 2004 Jan; 186(1):1-7. PubMed ID: 14679217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage of the lambda and P22 repressors by recA protein.
    Sauer RT; Ross MJ; Ptashne M
    J Biol Chem; 1982 Apr; 257(8):4458-62. PubMed ID: 6461657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium unfolding of dimeric and engineered monomeric forms of lambda Cro (F58W) repressor and the effect of added salts: evidence for the formation of folded monomer induced by sodium perchlorate.
    Maity H; Mossing MC; Eftink MR
    Arch Biochem Biophys; 2005 Feb; 434(1):93-107. PubMed ID: 15629113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RecA-mediated cleavage of lambda cI repressor accepts repressor dimers: probable role of prolyl cis-trans isomerization and catalytic involvement of H163, K177, and K232 of RecA.
    Pal A; Chattopadhyaya R
    J Biomol Struct Dyn; 2009 Oct; 27(2):221-33. PubMed ID: 19583447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the lambda repressor C-terminal domain octamer.
    Bell CE; Lewis M
    J Mol Biol; 2001 Dec; 314(5):1127-36. PubMed ID: 11743728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of a buried hydrogen bond to lambda repressor folding kinetics.
    Myers JK; Oas TG
    Biochemistry; 1999 May; 38(21):6761-8. PubMed ID: 10346896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain.
    Galkin VE; Yu X; Bielnicki J; Ndjonka D; Bell CE; Egelman EH
    J Mol Biol; 2009 Jan; 385(3):779-87. PubMed ID: 19013467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal melting properties of C-terminal domain mutants of bacteriophage lambda cI repressor.
    Merabet EK; Burz DS; Ackers GK
    Methods Enzymol; 1998; 295():450-67. PubMed ID: 9750232
    [No Abstract]   [Full Text] [Related]  

  • 10. Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding.
    Bell CE; Frescura P; Hochschild A; Lewis M
    Cell; 2000 Jun; 101(7):801-11. PubMed ID: 10892750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lambda repressor mutants that are better substrates for RecA-mediated cleavage.
    Gimble FS; Sauer RT
    J Mol Biol; 1989 Mar; 206(1):29-39. PubMed ID: 2522996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the lambda repressor and a model for pairwise cooperative operator binding.
    Stayrook S; Jaru-Ampornpan P; Ni J; Hochschild A; Lewis M
    Nature; 2008 Apr; 452(7190):1022-5. PubMed ID: 18432246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate-temperature relationships in lambda-repressor fragment lambda 6-85 folding.
    Yang WY; Gruebele M
    Biochemistry; 2004 Oct; 43(41):13018-25. PubMed ID: 15476395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bacteriophage 434 repressor dimer preferentially undergoes autoproteolysis by an intramolecular mechanism.
    McCabe BC; Pawlowski DR; Koudelka GB
    J Bacteriol; 2005 Aug; 187(16):5624-30. PubMed ID: 16077107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent autocleavage of lambda repressor occurs in the operator-bound form: characterization of lambda repressor autocleavage.
    Ghosh K; Pal A; Chattopadhyaya R
    Biochem J; 2004 Apr; 379(Pt 2):325-30. PubMed ID: 14733611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative study of lambda-phage SWITCH and its components.
    Lou C; Yang X; Liu X; He B; Ouyang Q
    Biophys J; 2007 Apr; 92(8):2685-93. PubMed ID: 17259278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structure and oligomerization behavior of equilibrium unfolding intermediates of the lambda cro repressor.
    Fabian H; Fälber K; Gast K; Reinstädler D; Rogov VV; Naumann D; Zamyatkin DF; Filimonov VV
    Biochemistry; 1999 Apr; 38(17):5633-42. PubMed ID: 10220352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative three-dimensional model of the carboxy-terminal domain of the lambda repressor and its use to build intact repressor tetramer models bound to adjacent operator sites.
    Chattopadhyaya R; Ghosh K
    J Struct Biol; 2003 Feb; 141(2):103-14. PubMed ID: 12615536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lambda and P22 phage repressors.
    Sauer RT; Nelson HC; Hehir K; Hecht MH; Gimble FS; DeAnda J; Poteete AR
    J Biomol Struct Dyn; 1983 Dec; 1(4):1011-22. PubMed ID: 6242868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.