These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 16935040)

  • 1. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.
    Rondelli G; Torricelli P; Fini M; Giardino R
    Biomaterials; 2005 Mar; 26(7):739-44. PubMed ID: 15350778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].
    Liang C; Guo L; Chen W; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution.
    Delgado-Alvarado C; Sundaram PA
    Acta Biomater; 2006 Nov; 2(6):701-8. PubMed ID: 16887397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.
    Hiromoto S; Onodera E; Chiba A; Asami K; Hanawa T
    Biomaterials; 2005 Aug; 26(24):4912-23. PubMed ID: 15769525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels.
    Alvarez K; Hyun SK; Fujimoto S; Nakajima H
    J Mater Sci Mater Med; 2008 Nov; 19(11):3385-97. PubMed ID: 18545945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative corrosion study of "Ni-free" austenitic stainless steels in view of medical applications.
    Reclaru L; Ziegenhagen R; Eschler PY; Blatter A; Lemaître J
    Acta Biomater; 2006 Jul; 2(4):433-44. PubMed ID: 16765883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution.
    Metikos-Huković M; Pilić Z; Babić R; Omanović D
    Acta Biomater; 2006 Nov; 2(6):693-700. PubMed ID: 16884967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts.
    Hiromoto S; Hanawa T
    J R Soc Interface; 2006 Aug; 3(9):495-505. PubMed ID: 16849246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels.
    Yoo YR; Jang SG; Oh KT; Kim JG; Kim YS
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):310-20. PubMed ID: 18161790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H
    Xu W; Yu F; Yang L; Zhang B; Hou B; Li Y
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():11-19. PubMed ID: 30184732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duplex stainless steels for osteosynthesis devices.
    Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A
    J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The corrosion and biological behaviour of titanium alloys in the presence of human lymphoid cells and MC3T3-E1 osteoblasts.
    Zhang YM; Chai F; Hornez JC; Li CL; Zhao YM; Traisnel M; Hildebrand HF
    Biomed Mater; 2009 Feb; 4(1):015004. PubMed ID: 18981540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.
    Shahryari A; Omanovic S; Szpunar JA
    J Biomed Mater Res A; 2009 Jun; 89(4):1049-62. PubMed ID: 18478556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of a new medical stainless steel].
    Ren Y; Yang K; Zhang B; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1101-3, 1122. PubMed ID: 17121363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of skeletal muscle proteins on corrosion of stainless steels].
    Rojas C; Lago ME
    Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.