These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1029 related articles for article (PubMed ID: 16935058)
1. Muscle force and gait performance: relationships after spinal cord injury. Wirz M; van Hedel HJ; Rupp R; Curt A; Dietz V Arch Phys Med Rehabil; 2006 Sep; 87(9):1218-22. PubMed ID: 16935058 [TBL] [Abstract][Full Text] [Related]
2. Comparison of lower extremity motor score parameters for patients with motor incomplete spinal cord injury using gait parameters. Shin JC; Yoo JH; Jung TH; Goo HR Spinal Cord; 2011 Apr; 49(4):529-33. PubMed ID: 21102574 [TBL] [Abstract][Full Text] [Related]
3. The assessment of walking capacity using the walking index for spinal cord injury: self-selected versus maximal levels. Kim MO; Burns AS; Ditunno JF; Marino RJ Arch Phys Med Rehabil; 2007 Jun; 88(6):762-7. PubMed ID: 17532899 [TBL] [Abstract][Full Text] [Related]
4. The reproducibility and convergent validity of the walking index for spinal cord injury (WISCI) in chronic spinal cord injury. Burns AS; Delparte JJ; Patrick M; Marino RJ; Ditunno JF Neurorehabil Neural Repair; 2011 Feb; 25(2):149-57. PubMed ID: 21239706 [TBL] [Abstract][Full Text] [Related]
5. Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. Zörner B; Blanckenhorn WU; Dietz V; ; Curt A J Neurotrauma; 2010 Jan; 27(1):241-52. PubMed ID: 19645527 [TBL] [Abstract][Full Text] [Related]
6. Beyond gait speed: a case report of a multidimensional approach to locomotor rehabilitation outcomes in incomplete spinal cord injury. Bowden MG; Hannold EM; Nair PM; Fuller LB; Behrman AL J Neurol Phys Ther; 2008 Sep; 32(3):129-38. PubMed ID: 18978669 [TBL] [Abstract][Full Text] [Related]
7. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial. Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827 [TBL] [Abstract][Full Text] [Related]
8. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [TBL] [Abstract][Full Text] [Related]
9. Combined use of body weight support, functional electric stimulation, and treadmill training to improve walking ability in individuals with chronic incomplete spinal cord injury. Field-Fote EC Arch Phys Med Rehabil; 2001 Jun; 82(6):818-24. PubMed ID: 11387589 [TBL] [Abstract][Full Text] [Related]
10. Clinical relevance of gait research applied to clinical trials in spinal cord injury. Ditunno J; Scivoletto G Brain Res Bull; 2009 Jan; 78(1):35-42. PubMed ID: 18848865 [TBL] [Abstract][Full Text] [Related]
11. Locomotor training using a robotic device in patients with subacute spinal cord injury. Schwartz I; Sajina A; Neeb M; Fisher I; Katz-Luerer M; Meiner Z Spinal Cord; 2011 Oct; 49(10):1062-7. PubMed ID: 21625239 [TBL] [Abstract][Full Text] [Related]
12. Assessment of walking speed and distance in subjects with an incomplete spinal cord injury. van Hedel HJ; Dietz V; Curt A Neurorehabil Neural Repair; 2007; 21(4):295-301. PubMed ID: 17353459 [TBL] [Abstract][Full Text] [Related]
13. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
14. Gait speed in relation to categories of functional ambulation after spinal cord injury. van Hedel HJ; Neurorehabil Neural Repair; 2009 May; 23(4):343-50. PubMed ID: 19036717 [TBL] [Abstract][Full Text] [Related]
15. Supported treadmill ambulation training after spinal cord injury: a pilot study. Protas EJ; Holmes SA; Qureshy H; Johnson A; Lee D; Sherwood AM Arch Phys Med Rehabil; 2001 Jun; 82(6):825-31. PubMed ID: 11387590 [TBL] [Abstract][Full Text] [Related]
16. Validation of the walking index for spinal cord injury in a US and European clinical population. Ditunno JF; Scivoletto G; Patrick M; Biering-Sorensen F; Abel R; Marino R Spinal Cord; 2008 Mar; 46(3):181-8. PubMed ID: 17502878 [TBL] [Abstract][Full Text] [Related]
17. Daily stepping in individuals with motor incomplete spinal cord injury. Saraf P; Rafferty MR; Moore JL; Kahn JH; Hendron K; Leech K; Hornby TG Phys Ther; 2010 Feb; 90(2):224-35. PubMed ID: 20022997 [TBL] [Abstract][Full Text] [Related]
18. Walking during daily life can be validly and responsively assessed in subjects with a spinal cord injury. van Hedel HJ; Dietz V; Neurorehabil Neural Repair; 2009 Feb; 23(2):117-24. PubMed ID: 18997156 [TBL] [Abstract][Full Text] [Related]
19. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Buehner JJ; Forrest GF; Schmidt-Read M; White S; Tansey K; Basso DM Arch Phys Med Rehabil; 2012 Sep; 93(9):1530-40. PubMed ID: 22920450 [TBL] [Abstract][Full Text] [Related]
20. Validity of the walking scale for spinal cord injury and other domains of function in a multicenter clinical trial. Ditunno JF; Barbeau H; Dobkin BH; Elashoff R; Harkema S; Marino RJ; Hauck WW; Apple D; Basso DM; Behrman A; Deforge D; Fugate L; Saulino M; Scott M; Chung J; Neurorehabil Neural Repair; 2007; 21(6):539-50. PubMed ID: 17507642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]