These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16935256)

  • 1. Crystallographic studies of the binding of ligands to the dicarboxylate site of Complex II, and the identity of the ligand in the "oxaloacetate-inhibited" state.
    Huang LS; Shen JT; Wang AC; Berry EA
    Biochim Biophys Acta; 2006; 1757(9-10):1073-83. PubMed ID: 16935256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of oxygen on activation state of complex I and lack of oxaloacetate inhibition of complex II in Langendorff perfused rat heart.
    Maklashina E; Kotlyar AB; Karliner JS; Cecchini G
    FEBS Lett; 2004 Jan; 556(1-3):64-8. PubMed ID: 14706827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].
    Belikova IuO; Kotliar AB
    Biokhimiia; 1988 Apr; 53(4):668-76. PubMed ID: 3395646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme.
    Huang LS; Sun G; Cobessi D; Wang AC; Shen JT; Tung EY; Anderson VE; Berry EA
    J Biol Chem; 2006 Mar; 281(9):5965-72. PubMed ID: 16371358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascaris suum NAD-malic enzyme is activated by L-malate and fumarate binding to separate allosteric sites.
    Karsten WE; Pais JE; Rao GS; Harris BG; Cook PF
    Biochemistry; 2003 Aug; 42(32):9712-21. PubMed ID: 12911313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration.
    Fink BD; Bai F; Yu L; Sheldon RD; Sharma A; Taylor EB; Sivitz WI
    J Biol Chem; 2018 Dec; 293(51):19932-19941. PubMed ID: 30385511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fumarate permeation in rat liver mitochondria: fumarate/malate and fumarate/phosphate translocators.
    Atlante A; Passarella S; Giannattasio S; Quagliariello E
    Biochem Biophys Res Commun; 1985 Oct; 132(1):8-18. PubMed ID: 4062935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates.
    Muller FL; Liu Y; Abdul-Ghani MA; Lustgarten MS; Bhattacharya A; Jang YC; Van Remmen H
    Biochem J; 2008 Jan; 409(2):491-9. PubMed ID: 17916065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.
    Stepanova A; Shurubor Y; Valsecchi F; Manfredi G; Galkin A
    Biochim Biophys Acta; 2016 Sep; 1857(9):1561-1568. PubMed ID: 27287543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct demonstration of enol-oxaloacetate as an immediate product of malate oxidation by the mammalian succinate dehydrogenase.
    Panchenko MV; Vinogradov AD
    FEBS Lett; 1991 Jul; 286(1-2):76-8. PubMed ID: 1864383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How fumarase recycles after the malate --> fumarate reaction. Insights into the reaction mechanism.
    Rose IA
    Biochemistry; 1998 Dec; 37(51):17651-8. PubMed ID: 9922130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1984 Jan; 784(1):24-34. PubMed ID: 6691982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase.
    Tomasiak TM; Archuleta TL; Andréll J; Luna-Chávez C; Davis TA; Sarwar M; Ham AJ; McDonald WH; Yankovskaya V; Stern HA; Johnston JN; Maklashina E; Cecchini G; Iverson TM
    J Biol Chem; 2011 Jan; 286(4):3047-56. PubMed ID: 21098488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct transformation of fumarate to oxaloacetate, without intermediate formation of malate, by Clostridium saccharobutyricum, strain GR 4.
    Cohen-Bazire G; Cohen GN
    Biochem J; 1949; 45(1):41-5. PubMed ID: 16748587
    [No Abstract]   [Full Text] [Related]  

  • 16. Biochemical characterization and essentiality of
    Jayaraman V; Suryavanshi A; Kalale P; Kunala J; Balaram H
    J Biol Chem; 2018 Apr; 293(16):5878-5894. PubMed ID: 29449371
    [No Abstract]   [Full Text] [Related]  

  • 17. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Comparison of hMDH2 Complexed with Natural Substrates and Cofactors: The Importance of Phosphate Binding for Active Conformation and Catalysis.
    Eo Y; Duong MTH; Ahn HC
    Biomolecules; 2022 Aug; 12(9):. PubMed ID: 36139014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pig heart fumarase contains two distinct substrate-binding sites differing in affinity.
    Beeckmans S; Van Driessche E
    J Biol Chem; 1998 Nov; 273(48):31661-9. PubMed ID: 9822627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate.
    Hassel B; Bråthe A; Petersen D
    J Neurochem; 2002 Jul; 82(2):410-9. PubMed ID: 12124442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.