BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16935328)

  • 1. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness.
    Moroni L; Schotel R; Sohier J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Dec; 27(35):5918-26. PubMed ID: 16935328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications.
    He CL; Huang ZM; Han XJ
    J Biomed Mater Res A; 2009 Apr; 89(1):80-95. PubMed ID: 18428982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-by-layer engineering of biocompatible, decomposable core-shell structures.
    Shenoy DB; Antipov AA; Sukhorukov GB; Möhwald H
    Biomacromolecules; 2003; 4(2):265-72. PubMed ID: 12625721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel composite fiber structures to provide drug/protein delivery for medical implants and tissue regeneration.
    Zilberman M
    Acta Biomater; 2007 Jan; 3(1):51-7. PubMed ID: 16956799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds.
    Brayfield CA; Marra KG; Leonard JP; Tracy Cui X; Gerlach JC
    Acta Biomater; 2008 Mar; 4(2):244-55. PubMed ID: 18060849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing partition-controlled drug release from electrospun core-shell fibers.
    Tiwari SK; Tzezana R; Zussman E; Venkatraman SS
    Int J Pharm; 2010 Jun; 392(1-2):209-17. PubMed ID: 20227472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration.
    Park SH; Kim TG; Kim HC; Yang DY; Park TG
    Acta Biomater; 2008 Sep; 4(5):1198-207. PubMed ID: 18458008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.
    Ovsianikov A; Schlie S; Ngezahayo A; Haverich A; Chichkov BN
    J Tissue Eng Regen Med; 2007; 1(6):443-9. PubMed ID: 18265416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of novel tantalum oxide sub-micrometer hollow spheres with tailored shell thickness.
    Agrawal M; Pich A; Gupta S; Zafeiropoulos NE; Simon P; Stamm M
    Langmuir; 2008 Feb; 24(3):1013-8. PubMed ID: 18171090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic nerve scaffolds with aligned intraluminal microchannels: a "sweet" approach to tissue engineering.
    Li J; Rickett TA; Shi R
    Langmuir; 2009 Feb; 25(3):1813-7. PubMed ID: 19105786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrices and scaffolds for protein delivery in tissue engineering.
    Tessmar JK; Göpferich AM
    Adv Drug Deliv Rev; 2007 May; 59(4-5):274-91. PubMed ID: 17544542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports.
    Ge Q; Wang Z; Yan Y
    J Am Chem Soc; 2009 Dec; 131(47):17056-7. PubMed ID: 19891506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohybrid nanosystems with polymer nanofibers and nanotubes.
    Greiner A; Wendorff JH; Yarin AL; Zussman E
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):387-93. PubMed ID: 16767464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform double-walled polymer microspheres of controllable shell thickness.
    Berkland C; Pollauf E; Pack DW; Kim K
    J Control Release; 2004 Apr; 96(1):101-11. PubMed ID: 15063033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paclitaxel-loaded composite fibers: microstructure and emulsion stability.
    Kraitzer A; Zilberman M
    J Biomed Mater Res A; 2007 May; 81(2):427-36. PubMed ID: 17117472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and preparation of polymeric scaffolds for tissue engineering.
    Weigel T; Schinkel G; Lendlein A
    Expert Rev Med Devices; 2006 Nov; 3(6):835-51. PubMed ID: 17280547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite fibrous biomaterials for tissue engineering obtained using a supercritical CO2 antisolvent process.
    García-González CA; Vega-González A; López-Periago AM; Subra-Paternault P; Domingo C
    Acta Biomater; 2009 May; 5(4):1094-103. PubMed ID: 19041288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite scaffolds for the engineering of hollow organs and tissues.
    Eberli D; Freitas Filho L; Atala A; Yoo JJ
    Methods; 2009 Feb; 47(2):109-15. PubMed ID: 18952175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.