BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 16935373)

  • 1. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology.
    Petibois C; Déléris G
    Trends Biotechnol; 2006 Oct; 24(10):455-62. PubMed ID: 16935373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of biochemical imaging changes in human pancreatic cancer tissue using Fourier-transform infrared microspectroscopy.
    Chen YJ; Cheng YD; Liu HY; Lin PY; Wang CS
    Chang Gung Med J; 2006; 29(5):518-27. PubMed ID: 17214398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of biochemical changes through the c6 gliomas progression and invasion by fourier transform infrared (FTIR) imaging.
    Beljebbar A; Dukic S; Amharref N; Bellefqih S; Manfait M
    Anal Chem; 2009 Nov; 81(22):9247-56. PubMed ID: 19824663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating cytochrome P450 3A4 genotype expression and FT-IR/Raman spectroscopy data as means of identification of breast tumors.
    Miller SO; Ewing GP; Howard C; Tachikawa H; Bigler SA; Barber WH; Angel M; McDaniel DO
    Biomed Sci Instrum; 2003; 39():24-9. PubMed ID: 12724863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation between normal and tumor vasculature of animal and human glioma by FTIR imaging.
    Wehbe K; Pineau R; Eimer S; Vital A; Loiseau H; Déléris G
    Analyst; 2010 Dec; 135(12):3052-9. PubMed ID: 20927459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques.
    Lasch P; Naumann D
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):189-202. PubMed ID: 9551650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histological mapping of biochemical changes in solid tumors by FT-IR spectral imaging.
    Petibois C; Drogat B; Bikfalvi A; Déléris G; Moenner M
    FEBS Lett; 2007 Nov; 581(28):5469-74. PubMed ID: 17983600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histopathology mapping of biochemical changes in myocardial infarction by Fourier transform infrared spectral imaging.
    Yang TT; Weng SF; Zheng N; Pan QH; Cao HL; Liu L; Zhang HD; Mu da W
    Forensic Sci Int; 2011 Apr; 207(1-3):e34-9. PubMed ID: 21216544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma.
    Pallua JD; Pezzei C; Zelger B; Schaefer G; Bittner LK; Huck-Pezzei VA; Schoenbichler SA; Hahn H; Kloss-Brandstaetter A; Kloss F; Bonn GK; Huck CW
    Analyst; 2012 Sep; 137(17):3965-74. PubMed ID: 22792538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research.
    Beekes M; Lasch P; Naumann D
    Vet Microbiol; 2007 Aug; 123(4):305-19. PubMed ID: 17540519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical performances of FT-IR spectrometry and imaging for concentration measurements within biological fluids, cells, and tissues.
    Petibois C; Gionnet K; Gonçalves M; Perromat A; Moenner M; Déléris G
    Analyst; 2006 May; 131(5):640-7. PubMed ID: 16633577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared spectroscopy of gallbladder carcinoma cell line.
    Du JK; Shi JS; Sun XJ; Wang JS; Xu YZ; Wu JG; Zhang YF; Weng SF
    Hepatobiliary Pancreat Dis Int; 2009 Feb; 8(1):75-8. PubMed ID: 19208520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multicomponent peak modeling of protein secondary structures: comparison of gaussian with lorentzian analytical methods for plant feed and seed molecular biology and chemistry research.
    Yu P
    Appl Spectrosc; 2005 Nov; 59(11):1372-80. PubMed ID: 16316515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuated total internal reflection infrared microscopy of multilayer plastic packaging foils.
    van Dalen G; Heussen PC; den Adel R; Hoeve RB
    Appl Spectrosc; 2007 Jun; 61(6):593-602. PubMed ID: 17650369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical imaging of latent fingerprint residues.
    Ricci C; Phiriyavityopas P; Curum N; Chan KL; Jickells S; Kazarian SG
    Appl Spectrosc; 2007 May; 61(5):514-22. PubMed ID: 17555621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin.
    Kohler A; Kirschner C; Oust A; Martens H
    Appl Spectrosc; 2005 Jun; 59(6):707-16. PubMed ID: 16053536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining the tape-lift method and Fourier transform infrared spectroscopic imaging for forensic applications.
    Ricci C; Chan KL; Kazarian SG
    Appl Spectrosc; 2006 Sep; 60(9):1013-21. PubMed ID: 17002827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of normal and malignant prostate tissue by Fourier transform infrared microspectroscopy.
    Pezzei C; Pallua JD; Schaefer G; Seifarth C; Huck-Pezzei V; Bittner LK; Klocker H; Bartsch G; Bonn GK; Huck CW
    Mol Biosyst; 2010 Nov; 6(11):2287-95. PubMed ID: 20871936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal spectroscopy combining time-of-flight-secondary ion mass spectrometry, synchrotron-FT-IR, and synchrotron-UV microspectroscopies on the same tissue section.
    Petit VW; Réfrégiers M; Guettier C; Jamme F; Sebanayakam K; Brunelle A; Laprévote O; Dumas P; Le Naour F
    Anal Chem; 2010 May; 82(9):3963-8. PubMed ID: 20387890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.