BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 16935376)

  • 21. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes.
    Selma MV; Martínez-Culebras PV; Aznar R
    Int J Food Microbiol; 2008 Feb; 122(1-2):126-34. PubMed ID: 18160163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro activity of imazalil against Penicillium expansum: comparison of the CLSI M38-A broth microdilution method with traditional techniques.
    Cabañas R; Abarca ML; Bragulat MR; Cabañes FJ
    Int J Food Microbiol; 2009 Jan; 129(1):26-9. PubMed ID: 19059665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The isoepoxydon dehydrogenase gene of the patulin metabolic pathway differs for Penicillium griseofulvum and Penicillium expansum.
    Dombrink-Kurtzman MA
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):1-8. PubMed ID: 16328863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a quantitative real-time PCR assay for the detection of Aspergillus carbonarius in grapes.
    Mulè G; Susca A; Logrieco A; Stea G; Visconti A
    Int J Food Microbiol; 2006 Sep; 111 Suppl 1():S28-34. PubMed ID: 16697479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms.
    Seif E; Leigh J; Liu Y; Roewer I; Forget L; Lang BF
    Nucleic Acids Res; 2005; 33(2):734-44. PubMed ID: 15689432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of PCR-DGGE methodology to monitor fungal communities on grapes.
    Laforgue R; Guérin L; Pernelle JJ; Monnet C; Dupont J; Bouix M
    J Appl Microbiol; 2009 Oct; 107(4):1208-18. PubMed ID: 19486393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes.
    Puel O; Tadrist S; Delaforge M; Oswald IP; Lebrihi A
    Int J Food Microbiol; 2007 Apr; 115(2):131-9. PubMed ID: 17169453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Species identification and comparative molecular and physiological analysis of Candida zemplinina and Candida stellata.
    Sipiczki M
    J Basic Microbiol; 2004; 44(6):471-9. PubMed ID: 15558818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Penicillium macrosclerotiorum, a new species producing large sclerotia discovered in south China.
    Wang L; Zhang XM; Zhuang WY
    Mycol Res; 2007 Oct; 111(Pt 10):1242-8. PubMed ID: 17998158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IGS-RFLP analysis and development of molecular markers for identification of Fusarium poae, Fusarium langsethiae, Fusarium sporotrichioides and Fusarium kyushuense.
    Konstantinova P; Yli-Mattila T
    Int J Food Microbiol; 2004 Sep; 95(3):321-31. PubMed ID: 15337596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PCR ITS-RFLP: A useful method for identifying filamentous fungi isolates on grapes.
    Diguta CF; Vincent B; Guilloux-Benatier M; Alexandre H; Rousseaux S
    Food Microbiol; 2011 Sep; 28(6):1145-54. PubMed ID: 21645813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and optimization of a loop-mediated isothermal amplification (LAMP) assay for the species-specific detection of Penicillium expansum.
    Frisch LM; Mann MA; Marek DN; Niessen L
    Food Microbiol; 2021 May; 95():103681. PubMed ID: 33397614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea.
    Achbani EH; Mounir R; Jaafari S; Douira A; Benbouazza ; Jijakli MH
    Commun Agric Appl Biol Sci; 2005; 70(3):143-9. PubMed ID: 16637169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resistance gene analogs are candidate markers for disease-resistance genes in grape ( Vitis spp.).
    Di Gaspero G; Cipriani G
    Theor Appl Genet; 2002 Dec; 106(1):163-72. PubMed ID: 12582885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation.
    Le Jeune C; Erny C; Demuyter C; Lollier M
    Food Microbiol; 2006 Dec; 23(8):709-16. PubMed ID: 16943073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the gene encoding the 16S rRNA of Enterobacter sakazakii and development of a species-specific PCR method.
    Hassan AA; Akineden O; Kress C; Estuningsih S; Schneider E; Usleber E
    Int J Food Microbiol; 2007 May; 116(2):214-20. PubMed ID: 17289198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differentiation of closely related fungi by electronic nose analysis.
    Karlshøj K; Nielsen PV; Larsen TO
    J Food Sci; 2007 Aug; 72(6):M187-92. PubMed ID: 17995685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia.
    Raspor P; Milek DM; Polanc J; Mozina SS; Cadez N
    Int J Food Microbiol; 2006 May; 109(1-2):97-102. PubMed ID: 16626833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them.
    Dufour D; Nicodème M; Perrin C; Driou A; Brusseaux E; Humbert G; Gaillard JL; Dary A
    Int J Food Microbiol; 2008 Jul; 125(2):188-96. PubMed ID: 18511140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mycological survey of ripped service tree fruits (Sorbus domestica L.) with an emphasis on toxinogenic fungi.
    Labuda R; Krivánek L L; Tancinová D; Mátéová S; Hrubcová S
    Int J Food Microbiol; 2005 Mar; 99(2):215-23. PubMed ID: 15734569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.