These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16935492)

  • 1. Iron enriched yeast biomass--a promising mineral feed supplement.
    Pas M; Piskur B; Sustaric M; Raspor P
    Bioresour Technol; 2007 May; 98(8):1622-8. PubMed ID: 16935492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of several waste substrates for carotenoid-rich yeast biomass production.
    Marova I; Carnecka M; Halienova A; Certik M; Dvorakova T; Haronikova A
    J Environ Manage; 2012 Mar; 95 Suppl():S338-42. PubMed ID: 21741756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of iron- and zinc-enriched yeast strain and optimization of cultivation conditions.
    Wang Z; Zhang J; Su T; Guan Z; Ji M
    Prep Biochem Biotechnol; 2011; 41(3):278-86. PubMed ID: 21660867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast biomass production in brewery's spent grains hemicellulosic hydrolyzate.
    Duarte LC; Carvalheiro F; Lopes S; Neves I; Gírio FM
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):119-29. PubMed ID: 18418745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomass production of yeast isolate from salad oil manufacturing wastewater.
    Zheng S; Yang M; Yang Z
    Bioresour Technol; 2005 Jul; 96(10):1183-7. PubMed ID: 15683910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological diversity within the Kluyveromyces marxianus species [corrected].
    Rocha SN; Abrahão-Neto J; Gombert AK
    Antonie Van Leeuwenhoek; 2011 Nov; 100(4):619-30. PubMed ID: 21732033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induced cross-protection responses against Cr(III) and Fe(III) ions in Saccharomyces cerevisiae.
    Fujs S; Ekert M; Scancar J; Raspor P
    J Basic Microbiol; 2007 Aug; 47(4):301-8. PubMed ID: 17647208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cultivation mode on a bioprocess for chromium yeast biomass enrichment.
    Batic M; Raspor P
    Pflugers Arch; 2000; 439(3 Suppl):R73-5. PubMed ID: 10653147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of starch degradation by yeasts during fermentation for using in animal feed.
    Alonso S; Arévalo-Villena M; Ubeda J; Briones A
    Appl Biochem Biotechnol; 2010 Nov; 162(7):2058-66. PubMed ID: 20454868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation.
    Löser C; Urit T; Förster S; Stukert A; Bley T
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):685-96. PubMed ID: 22695802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of chromium (VI) on growth physiology and sorptional capacity of yeast].
    Lozovaia OG; Kasatkina TP; Podgorskiĭ VS
    Mikrobiol Z; 2004; 66(3):43-50. PubMed ID: 15456217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Iron accumulation by saccharomycete yeasts growing on media with an elevated iron content].
    Kovalev LM; Kozlov IuP; Krulikovskaia LI; Ianova VM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1985; (2):93-9. PubMed ID: 3886020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal conditions for accumulation of bioavailable iron in Saccharomyces cerevisiae cells.
    Gligic L; Vujovic N; Stevovic B; Manic J
    Boll Chim Farm; 2003 Oct; 142(8):330-2. PubMed ID: 15040461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Search for lectin producers among some yeast species].
    Kovalenko EA; Nagornaia SS; Get'man EI; Ignatova EA; Babich TV; Podgorskiĭ VS
    Mikrobiol Z; 2001; 63(5):44-8. PubMed ID: 11785420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae.
    Suhajda A; Hegóczki J; Janzsó B; Pais I; Vereczkey G
    J Trace Elem Med Biol; 2000 Apr; 14(1):43-7. PubMed ID: 10836533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe bioavailability from Fe-enriched yeast biomass in growing rats.
    Pirman T; Orešnik A
    Animal; 2012 Feb; 6(2):221-6. PubMed ID: 22436179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae.
    Mrvcić J; Stanzer D; Stehlik-Tomas V; Skevin D; Grba S
    J Biosci Bioeng; 2007 Apr; 103(4):331-7. PubMed ID: 17502274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The uptake of different iron salts by the yeast Saccharomyces cerevisiae.
    Gaensly F; Picheth G; Brand D; Bonfim TM
    Braz J Microbiol; 2014; 45(2):491-4. PubMed ID: 25242932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced antioxidant formula based on a selenium-supplemented carotenoid-producing yeast biomass.
    Breierová E; Gregor T; Marová I; Certík M; Kogan G
    Chem Biodivers; 2008 Mar; 5(3):440-6. PubMed ID: 18357552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.