These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Polymer physics: DNA off the Hooke. Podgornik R Nat Nanotechnol; 2006 Nov; 1(2):100-1. PubMed ID: 18654159 [No Abstract] [Full Text] [Related]
43. Mechanical transition in a highly stretched and torsionally constrained DNA. Strzelecki J; Peplowski L; Lenartowski R; Nowak W; Balter A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020701. PubMed ID: 25353406 [TBL] [Abstract][Full Text] [Related]
44. Definition of the persistence length in the coarse-grained models of DNA elasticity. Fathizadeh A; Eslami-Mossallam B; Ejtehadi MR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051907. PubMed ID: 23214814 [TBL] [Abstract][Full Text] [Related]
45. A systematically coarse-grained model for DNA and its predictions for persistence length, stacking, twist, and chirality. Morriss-Andrews A; Rottler J; Plotkin SS J Chem Phys; 2010 Jan; 132(3):035105. PubMed ID: 20095755 [TBL] [Abstract][Full Text] [Related]
46. Opening rates of DNA hairpins: experiment and model. Hanne J; Zocchi G; Voulgarakis NK; Bishop AR; Rasmussen KØ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011909. PubMed ID: 17677496 [TBL] [Abstract][Full Text] [Related]
48. A mesoscale model of DNA and its renaturation. Sambriski EJ; Schwartz DC; de Pablo JJ Biophys J; 2009 Mar; 96(5):1675-90. PubMed ID: 19254530 [TBL] [Abstract][Full Text] [Related]
49. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study. Vuletić T; Dolanski Babić S; Ivek T; Grgicin D; Tomić S; Podgornik R Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011922. PubMed ID: 20866663 [TBL] [Abstract][Full Text] [Related]
51. Force fluctuations assist nanopore unzipping of DNA. Viasnoff V; Chiaruttini N; Muzard J; Bockelmann U J Phys Condens Matter; 2010 Nov; 22(45):454122. PubMed ID: 21339609 [TBL] [Abstract][Full Text] [Related]
52. The electrostatic contribution to the B to Z transition of DNA. Misra VK; Honig B Biochemistry; 1996 Jan; 35(4):1115-24. PubMed ID: 8573566 [TBL] [Abstract][Full Text] [Related]
53. Statistical-mechanical theory of DNA looping. Zhang Y; McEwen AE; Crothers DM; Levene SD Biophys J; 2006 Mar; 90(6):1903-12. PubMed ID: 16361335 [TBL] [Abstract][Full Text] [Related]
54. Statistical mechanics of double-helical polymers. De Col A; Liverpool TB Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061907. PubMed ID: 15244617 [TBL] [Abstract][Full Text] [Related]
55. Elastic origin of chiral selection in DNA wrapping. Yanao T; Yoshikawa K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021904. PubMed ID: 18352048 [TBL] [Abstract][Full Text] [Related]
56. Nonlinear low-force elasticity of single-stranded DNA molecules. Saleh OA; McIntosh DB; Pincus P; Ribeck N Phys Rev Lett; 2009 Feb; 102(6):068301. PubMed ID: 19257640 [TBL] [Abstract][Full Text] [Related]
57. Effect of external stress on the thermal melting of DNA. Rudnick J; Kuriabova T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051903. PubMed ID: 18643098 [TBL] [Abstract][Full Text] [Related]
58. Disruption of protein-mediated DNA looping by tension in the substrate DNA. Blumberg S; Tkachenko AV; Meiners JC Biophys J; 2005 Mar; 88(3):1692-701. PubMed ID: 15653717 [TBL] [Abstract][Full Text] [Related]
59. Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels. Reccius CH; Stavis SM; Mannion JT; Walker LP; Craighead HG Biophys J; 2008 Jul; 95(1):273-86. PubMed ID: 18339746 [TBL] [Abstract][Full Text] [Related]
60. High flexibility of DNA on short length scales probed by atomic force microscopy. Wiggins PA; van der Heijden T; Moreno-Herrero F; Spakowitz A; Phillips R; Widom J; Dekker C; Nelson PC Nat Nanotechnol; 2006 Nov; 1(2):137-41. PubMed ID: 18654166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]