These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 16936198)
21. Deficiency of PPARalpha disturbs the response of lipogenic flux and of lipogenic and cholesterogenic gene expression to dietary cholesterol in mouse white adipose tissue. Islam KK; Knight BL; Frayn KN; Patel DD; Gibbons GF Biochim Biophys Acta; 2005 Jun; 1734(3):259-68. PubMed ID: 15878692 [TBL] [Abstract][Full Text] [Related]
22. Calorie restriction modulates renal expression of sterol regulatory element binding proteins, lipid accumulation, and age-related renal disease. Jiang T; Liebman SE; Lucia MS; Phillips CL; Levi M J Am Soc Nephrol; 2005 Aug; 16(8):2385-94. PubMed ID: 15944339 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Yamabe N; Noh JS; Park CH; Kang KS; Shibahara N; Tanaka T; Yokozawa T Eur J Pharmacol; 2010 Dec; 648(1-3):179-87. PubMed ID: 20826139 [TBL] [Abstract][Full Text] [Related]
24. Sterol regulatory element-binding proteins, liver X receptor, ABCA1 transporter, CD36, scavenger receptors A1 and B1 in nephrotic kidney. Kim HJ; Vaziri ND Am J Nephrol; 2009; 29(6):607-14. PubMed ID: 19147991 [TBL] [Abstract][Full Text] [Related]
25. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Yoshikawa T; Shimano H; Amemiya-Kudo M; Yahagi N; Hasty AH; Matsuzaka T; Okazaki H; Tamura Y; Iizuka Y; Ohashi K; Osuga J; Harada K; Gotoda T; Kimura S; Ishibashi S; Yamada N Mol Cell Biol; 2001 May; 21(9):2991-3000. PubMed ID: 11287605 [TBL] [Abstract][Full Text] [Related]
26. Polyphenol-rich black chokeberry (Aronia melanocarpa) extract regulates the expression of genes critical for intestinal cholesterol flux in Caco-2 cells. Kim B; Park Y; Wegner CJ; Bolling BW; Lee J J Nutr Biochem; 2013 Sep; 24(9):1564-70. PubMed ID: 23517916 [TBL] [Abstract][Full Text] [Related]
27. Acute clozapine exposure in vivo induces lipid accumulation and marked sequential changes in the expression of SREBP, PPAR, and LXR target genes in rat liver. Fernø J; Vik-Mo AO; Jassim G; Håvik B; Berge K; Skrede S; Gudbrandsen OA; Waage J; Lunder N; Mørk S; Berge RK; Jørgensen HA; Steen VM Psychopharmacology (Berl); 2009 Mar; 203(1):73-84. PubMed ID: 18989661 [TBL] [Abstract][Full Text] [Related]
28. Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Tobin KA; Steineger HH; Alberti S; Spydevold O; Auwerx J; Gustafsson JA; Nebb HI Mol Endocrinol; 2000 May; 14(5):741-52. PubMed ID: 10809236 [TBL] [Abstract][Full Text] [Related]
29. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease. Du C; Wu M; Liu H; Ren Y; Du Y; Wu H; Wei J; Liu C; Yao F; Wang H; Zhu Y; Duan H; Shi Y Int J Biochem Cell Biol; 2016 Oct; 79():1-13. PubMed ID: 27497988 [TBL] [Abstract][Full Text] [Related]
30. Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. Kim TH; Kim H; Park JM; Im SS; Bae JS; Kim MY; Yoon HG; Cha JY; Kim KS; Ahn YH J Biol Chem; 2009 May; 284(22):15071-83. PubMed ID: 19366697 [TBL] [Abstract][Full Text] [Related]
31. Alpha-linolenic acid increases cholesterol efflux in macrophage-derived foam cells by decreasing stearoyl CoA desaturase 1 expression: evidence for a farnesoid-X-receptor mechanism of action. Zhang J; Kris-Etherton PM; Thompson JT; Hannon DB; Gillies PJ; Heuvel JP J Nutr Biochem; 2012 Apr; 23(4):400-9. PubMed ID: 21658928 [TBL] [Abstract][Full Text] [Related]
32. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. Jiang T; Wang Z; Proctor G; Moskowitz S; Liebman SE; Rogers T; Lucia MS; Li J; Levi M J Biol Chem; 2005 Sep; 280(37):32317-25. PubMed ID: 16046411 [TBL] [Abstract][Full Text] [Related]
33. Effects of short-term refeeding on the expression of genes involved in lipid metabolism in chicks (Gallus gallus). Saneyasu T; Shiragaki M; Kurachi K; Kamisoyama H; Honda K Comp Biochem Physiol B Biochem Mol Biol; 2013 Sep; 166(1):1-6. PubMed ID: 23769904 [TBL] [Abstract][Full Text] [Related]
34. Expression of SREBP-1c Requires SREBP-2-mediated Generation of a Sterol Ligand for LXR in Livers of Mice. Rong S; Cortés VA; Rashid S; Anderson NN; McDonald JG; Liang G; Moon YA; Hammer RE; Horton JD Elife; 2017 Feb; 6():. PubMed ID: 28244871 [TBL] [Abstract][Full Text] [Related]
35. Role of liver X receptor, insulin and peroxisome proliferator activated receptor alpha on in vivo desaturase modulation of unsaturated fatty acid biosynthesis. Montanaro MA; González MS; Bernasconi AM; Brenner RR Lipids; 2007 Apr; 42(3):197-210. PubMed ID: 17393226 [TBL] [Abstract][Full Text] [Related]
36. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. Watanabe M; Houten SM; Wang L; Moschetta A; Mangelsdorf DJ; Heyman RA; Moore DD; Auwerx J J Clin Invest; 2004 May; 113(10):1408-18. PubMed ID: 15146238 [TBL] [Abstract][Full Text] [Related]
37. Regulation of energy metabolism by long-chain fatty acids. Nakamura MT; Yudell BE; Loor JJ Prog Lipid Res; 2014 Jan; 53():124-44. PubMed ID: 24362249 [TBL] [Abstract][Full Text] [Related]
38. Inhibition of cholesterol absorption associated with a PPAR alpha-dependent increase in ABC binding cassette transporter A1 in mice. Knight BL; Patel DD; Humphreys SM; Wiggins D; Gibbons GF J Lipid Res; 2003 Nov; 44(11):2049-58. PubMed ID: 12897186 [TBL] [Abstract][Full Text] [Related]
39. Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipid metabolism. Wójcicka G; Jamroz-Wiśniewska A; Horoszewicz K; Bełtowski J Postepy Hig Med Dosw (Online); 2007 Dec; 61():736-59. PubMed ID: 18063918 [TBL] [Abstract][Full Text] [Related]
40. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. Cho KH; Kim HJ; Kamanna VS; Vaziri ND Biochim Biophys Acta; 2010 Jan; 1800(1):6-15. PubMed ID: 19878707 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]