These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 16936223)
1. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. Davies C; Shin R; Liu W; Thomas MR; Schachtman DP J Exp Bot; 2006; 57(12):3209-16. PubMed ID: 16936223 [TBL] [Abstract][Full Text] [Related]
2. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Hayes MA; Davies C; Dry IB J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752 [TBL] [Abstract][Full Text] [Related]
3. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Peng FY; Reid KE; Liao N; Schlosser J; Lijavetzky D; Holt R; Martínez Zapater JM; Jones S; Marra M; Bohlmann J; Lund ST Gene; 2007 Nov; 402(1-2):40-50. PubMed ID: 17761391 [TBL] [Abstract][Full Text] [Related]
4. A grape berry (Vitis vinifera L.) cation/proton antiporter is associated with berry ripening. Hanana M; Cagnac O; Yamaguchi T; Hamdi S; Ghorbel A; Blumwald E Plant Cell Physiol; 2007 Jun; 48(6):804-11. PubMed ID: 17463051 [TBL] [Abstract][Full Text] [Related]
5. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
6. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
7. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development. Krasnow M; Matthews M; Shackel K J Exp Bot; 2008; 59(4):849-59. PubMed ID: 18272917 [TBL] [Abstract][Full Text] [Related]
8. Potassium transport in developing fleshy fruits: the grapevine inward K(+) channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells. Cuéllar T; Azeem F; Andrianteranagna M; Pascaud F; Verdeil JL; Sentenac H; Zimmermann S; Gaillard I Plant J; 2013 Mar; 73(6):1006-18. PubMed ID: 23217029 [TBL] [Abstract][Full Text] [Related]
9. Grape berry plasma membrane proteome analysis and its differential expression during ripening. Zhang J; Ma H; Feng J; Zeng L; Wang Z; Chen S J Exp Bot; 2008; 59(11):2979-90. PubMed ID: 18550598 [TBL] [Abstract][Full Text] [Related]
10. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. Cv. cabernet sauvignon grape berries. Bindon KA; Dry PR; Loveys BR J Agric Food Chem; 2007 May; 55(11):4493-500. PubMed ID: 17469842 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization and expression analysis of the Rop GTPase family in Vitis vinifera. Abbal P; Pradal M; Sauvage FX; Chatelet P; Paillard S; Canaguier A; Adam-Blondon AF; Tesniere C J Exp Bot; 2007; 58(10):2641-52. PubMed ID: 17578867 [TBL] [Abstract][Full Text] [Related]
12. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Mathieu S; Terrier N; Procureur J; Bigey F; Günata Z J Exp Bot; 2005 Oct; 56(420):2721-31. PubMed ID: 16131507 [TBL] [Abstract][Full Text] [Related]
13. Functional xylem in the post-veraison grape berry. Bondada BR; Matthews MA; Shackel KA J Exp Bot; 2005 Nov; 56(421):2949-57. PubMed ID: 16207748 [TBL] [Abstract][Full Text] [Related]
14. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. De Angeli A; Baetz U; Francisco R; Zhang J; Chaves MM; Regalado A Planta; 2013 Aug; 238(2):283-91. PubMed ID: 23645258 [TBL] [Abstract][Full Text] [Related]
15. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151 [TBL] [Abstract][Full Text] [Related]
16. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. Cadot Y; Miñana-Castelló MT; Chevalier M J Agric Food Chem; 2006 Nov; 54(24):9206-15. PubMed ID: 17117811 [TBL] [Abstract][Full Text] [Related]
17. Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Lücker J; Bowen P; Bohlmann J Phytochemistry; 2004 Oct; 65(19):2649-59. PubMed ID: 15464152 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. Chervin C; Tira-Umphon A; Terrier N; Zouine M; Severac D; Roustan JP Physiol Plant; 2008 Nov; 134(3):534-46. PubMed ID: 18785902 [TBL] [Abstract][Full Text] [Related]
19. A grapevine Shaker inward K(+) channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Cuéllar T; Pascaud F; Verdeil JL; Torregrosa L; Adam-Blondon AF; Thibaud JB; Sentenac H; Gaillard I Plant J; 2010 Jan; 61(1):58-69. PubMed ID: 19781051 [TBL] [Abstract][Full Text] [Related]
20. Proteome analysis of grape skins during ripening. Deytieux C; Geny L; Lapaillerie D; Claverol S; Bonneu M; Donèche B J Exp Bot; 2007; 58(7):1851-62. PubMed ID: 17426054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]