BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 16936722)

  • 1. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
    Huber R; Ghilardi MF; Massimini M; Ferrarelli F; Riedner BA; Peterson MJ; Tononi G
    Nat Neurosci; 2006 Sep; 9(9):1169-76. PubMed ID: 16936722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local sleep and learning.
    Huber R; Ghilardi MF; Massimini M; Tononi G
    Nature; 2004 Jul; 430(6995):78-81. PubMed ID: 15184907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior.
    Ringli M; Huber R
    Prog Brain Res; 2011; 193():63-82. PubMed ID: 21854956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep.
    Huber R; Määttä S; Esser SK; Sarasso S; Ferrarelli F; Watson A; Ferreri F; Peterson MJ; Tononi G
    J Neurosci; 2008 Jul; 28(31):7911-8. PubMed ID: 18667623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep.
    Huber R; Esser SK; Ferrarelli F; Massimini M; Peterson MJ; Tononi G
    PLoS One; 2007 Mar; 2(3):e276. PubMed ID: 17342210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
    Tamaki M; Matsuoka T; Nittono H; Hori T
    Clin Neurophysiol; 2009 May; 120(5):878-86. PubMed ID: 19376746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo.
    Werk CM; Harbour VL; Chapman CA
    Neuroscience; 2005; 131(4):793-800. PubMed ID: 15749334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat.
    Hanlon EC; Faraguna U; Vyazovskiy VV; Tononi G; Cirelli C
    Sleep; 2009 Jun; 32(6):719-29. PubMed ID: 19544747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A local signature of LTP- and LTD-like plasticity in human NREM sleep.
    Bergmann TO; Mölle M; Marshall L; Kaya-Yildiz L; Born J; Roman Siebner H
    Eur J Neurosci; 2008 May; 27(9):2241-9. PubMed ID: 18445215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognition and paroxysmal EEG activities: from a single spike to electrical status epilepticus during sleep.
    Tassinari CA; Rubboli G
    Epilepsia; 2006; 47 Suppl 2():40-3. PubMed ID: 17105458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cortical topography of local sleep.
    Murphy M; Huber R; Esser S; Riedner BA; Massimini M; Ferrarelli F; Ghilardi MF; Tononi G
    Curr Top Med Chem; 2011; 11(19):2438-46. PubMed ID: 21906021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The slow-wave components of the cyclic alternating pattern (CAP) have a role in sleep-related learning processes.
    Ferri R; Huber R; Aricò D; Drago V; Rundo F; Ghilardi MF; Massimini M; Tononi G
    Neurosci Lett; 2008 Feb; 432(3):228-31. PubMed ID: 18248892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey.
    Jackson A; Mavoori J; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):360-74. PubMed ID: 17021028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG sleep slow-wave activity as a mirror of cortical maturation.
    Buchmann A; Ringli M; Kurth S; Schaerer M; Geiger A; Jenni OG; Huber R
    Cereb Cortex; 2011 Mar; 21(3):607-15. PubMed ID: 20624840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity.
    Wilhelm I; Kurth S; Ringli M; Mouthon AL; Buchmann A; Geiger A; Jenni OG; Huber R
    J Neurosci; 2014 Sep; 34(37):12568-75. PubMed ID: 25209294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of short-term slow wave sleep homeostasis and its disruption by minocycline in the laboratory mouse.
    Wisor JP; Clegern WC
    Neurosci Lett; 2011 Mar; 490(3):165-9. PubMed ID: 21111032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies.
    Hanlon EC; Vyazovskiy VV; Faraguna U; Tononi G; Cirelli C
    Curr Top Med Chem; 2011; 11(19):2472-82. PubMed ID: 21906017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.