These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16936893)

  • 1. X-band continuously variable true-time delay lines using air-guiding photonic bandgap fibers and a broadband light source.
    Liu Z; Zheng X; Zhang H; Guo Y; Zhou B
    Opt Lett; 2006 Sep; 31(18):2789-91. PubMed ID: 16936893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable highly birefringent photonic bandgap fibers.
    Zhang C; Kai G; Wang Z; Liu Y; Sun T; Yuan S; Dong X
    Opt Lett; 2005 Oct; 30(20):2703-5. PubMed ID: 16252747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells.
    Thapa R; Knabe K; Corwin KL; Washburn BR
    Opt Express; 2006 Oct; 14(21):9576-83. PubMed ID: 19529347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of air-guiding modified honeycomb photonic band-gap fibers for effectively singlemode operation.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2006 Mar; 14(6):2404-12. PubMed ID: 19503579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid.
    Du J; Liu Y; Wang Z; Liu Z; Zou B; Jin L; Liu B; Kai G; Dong X
    Opt Express; 2008 Mar; 16(6):4263-9. PubMed ID: 18542521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.
    de Matos C; Taylor J; Hansen T; Hansen K; Broeng J
    Opt Express; 2003 Nov; 11(22):2832-7. PubMed ID: 19471402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 7-cell hollow-core photonic bandgap fiber with broad spectral bandwidth and low loss.
    Zhang X; Gao S; Wang Y; Ding W; Wang X; Wang P
    Opt Express; 2019 Apr; 27(8):11608-11616. PubMed ID: 31053003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leakage loss and group velocity dispersion in air-core photonic bandgap fibers.
    Saitoh K; Koshiba M
    Opt Express; 2003 Nov; 11(23):3100-9. PubMed ID: 19471432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of 7 and 19 cells core air-guiding photonic crystal fibers for low-loss, wide bandwidth and dispersion controlled operation.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2007 Dec; 15(26):17577-86. PubMed ID: 19551052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2011 Jan; 19(3):1713-27. PubMed ID: 21368985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single scatterer Fano resonances in solid core photonic band gap fibers.
    Steinvurzel P; Martijn de Sterke C; Steel MJ; Kuhlmey BT; Eggleton BJ
    Opt Express; 2006 Sep; 14(19):8797-811. PubMed ID: 19529262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas sensing using air-guiding photonic bandgap fibers.
    Ritari T; Tuominen J; Ludvigsen H; Petersen J; Sørensen T; Hansen T; Simonsen H
    Opt Express; 2004 Aug; 12(17):4080-7. PubMed ID: 19483949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact broadband 5-bit photonic true-time-delay module for phased-array antennas.
    Fu Z; Li R; Chen RT
    Opt Lett; 1998 Apr; 23(7):522-4. PubMed ID: 18084564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics.
    Guan X; Ding Y; Frandsen LH
    Opt Lett; 2015 Aug; 40(16):3893-6. PubMed ID: 26274687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers.
    Gao S; Yang C; Xiao X; Tian Y; You Z; Jin G
    Opt Express; 2006 Apr; 14(7):2873-9. PubMed ID: 19516424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers.
    Fokoua EN; Poletti F; Richardson DJ
    Opt Express; 2012 Sep; 20(19):20980-91. PubMed ID: 23037221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet-inscribed long period gratings in all-solid photonic bandgap fibers.
    Jin L; Wang Z; Liu Y; Kai G; Dong X
    Opt Express; 2008 Dec; 16(25):21119-31. PubMed ID: 19065252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuously tunable true-time delay lines based on a one-dimensional grating waveguide for beam steering in phased array antennas.
    Wang G; Dai T; Jiang J; Guo X; Chen B; Wang Y; Yu H; Jiang X; Yang J
    Appl Opt; 2018 Jun; 57(18):4998-5003. PubMed ID: 30117958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber.
    Xu J; Peucheret C; Lyngsø JK; Leick L
    Opt Express; 2012 May; 20(11):12449-56. PubMed ID: 22714232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.