These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16936896)

  • 21. Telecom-band degenerate-frequency photon pair generation in silicon microring cavities.
    Guo Y; Zhang W; Dong S; Huang Y; Peng J
    Opt Lett; 2014 Apr; 39(8):2526-9. PubMed ID: 24979035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-photon interferences on a silica-on-silicon chip with telecom-band photon pairs generated in a fiber.
    Li XY; Zhu F; Qin L; Zhang JS; Ren MZ; An JM; Zhang W; You LX; Wang Z; Xu XS
    Opt Express; 2018 Oct; 26(22):29471-29481. PubMed ID: 30470110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entangled photon pair generation in an integrated SiC platform.
    Rahmouni A; Wang R; Li J; Tang X; Gerrits T; Slattery O; Li Q; Ma L
    Light Sci Appl; 2024 May; 13(1):110. PubMed ID: 38724516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device.
    Arahira S; Murai H
    Opt Express; 2013 Mar; 21(6):7841-50. PubMed ID: 23546166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband fiber-based entangled photon-pair source at telecom O-band.
    Chen C; Xu C; Riazi A; Zhu EY; Gladyshev AV; Kazansky PG; Qian L
    Opt Lett; 2021 Mar; 46(6):1261-1264. PubMed ID: 33720162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drop-in compatible entanglement for optical-fiber networks.
    Hall MA; Altepeter JB; Kumar P
    Opt Express; 2009 Aug; 17(17):14558-66. PubMed ID: 19687935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chip-integrated visible-telecom photon pair sources for quantum communication.
    Lu X; Li Q; Westly DA; Moille G; Singh A; Anant V; Srinivasan K
    Nat Phys; 2019; 15():. PubMed ID: 31275426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.
    Sua YM; Malowicki J; Lee KF
    Opt Lett; 2014 Aug; 39(16):4808-11. PubMed ID: 25121880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poled-fiber source of broadband polarization-entangled photon pairs.
    Zhu EY; Tang Z; Qian L; Helt LG; Liscidini M; Sipe JE; Corbari C; Canagasabey A; Ibsen M; Kazansky PG
    Opt Lett; 2013 Nov; 38(21):4397-400. PubMed ID: 24177103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of high-purity entangled photon pairs using silicon wire waveguide.
    Harada K; Takesue H; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Tokura Y; Itabashi S
    Opt Express; 2008 Dec; 16(25):20368-73. PubMed ID: 19065174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide.
    Hunault M; Takesue H; Tadanaga O; Nishida Y; Asobe M
    Opt Lett; 2010 Apr; 35(8):1239-41. PubMed ID: 20410979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of telecom-band correlated photon pairs in different spatial modes using few-mode fibers.
    Guo C; Su J; Zhang Z; Cui L; Li X
    Opt Lett; 2019 Jan; 44(2):235-238. PubMed ID: 30644869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Demonstration of spectral correlation control in a source of polarization-entangled photon pairs at telecom wavelength.
    Lutz T; Kolenderski P; Jennewein T
    Opt Lett; 2014 Mar; 39(6):1481-4. PubMed ID: 24690818
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: influence of background noise.
    Yang L; Sun F; Zhao N; Li X
    Opt Express; 2014 Feb; 22(3):2553-61. PubMed ID: 24663548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-quality fiber-optic polarization entanglement distribution at 1.3 microm telecom wavelength.
    Zhong T; Hu X; Wong FN; Berggren KK; Roberts TD; Battle P
    Opt Lett; 2010 May; 35(9):1392-4. PubMed ID: 20436580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of infrared photon pairs by spontaneous four-wave mixing in a CS
    Afsharnia M; Junaid S; Saravi S; Chemnitz M; Wondraczek K; Pertsch T; Schmidt MA; Setzpfandt F
    Sci Rep; 2024 Jan; 14(1):977. PubMed ID: 38200053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarization-Entangled Photons from a Warm Atomic Ensemble Using a Sagnac Interferometer.
    Park J; Kim H; Moon HS
    Phys Rev Lett; 2019 Apr; 122(14):143601. PubMed ID: 31050487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum state tomography of a fiber-based source of polarization-entangled photon pairs.
    Fan J; Eisaman MD; Migdall A
    Opt Express; 2007 Dec; 15(26):18339-44. PubMed ID: 19551131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polarization-entangled photon generation using partial spatially coherent pump beam.
    Ismail Y; Joshi S; Petruccione F
    Sci Rep; 2017 Sep; 7(1):12091. PubMed ID: 28935985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1.5-μm band polarization entangled photon-pair source with variable Bell states.
    Arahira S; Kishimoto T; Murai H
    Opt Express; 2012 Apr; 20(9):9862-75. PubMed ID: 22535079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.