These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 16936985)
1. [Anthropometric parameters and metabolic syndrome in type 2 diabetes]. de Castro SH; de Mato HJ; Gomes MB Arq Bras Endocrinol Metabol; 2006 Jun; 50(3):450-5. PubMed ID: 16936985 [TBL] [Abstract][Full Text] [Related]
2. [The influence of increased body mass index and abdominal obesity on the development of metabolic syndrome]. Tytmonas G Medicina (Kaunas); 2006; 42(2):123-9. PubMed ID: 16528128 [TBL] [Abstract][Full Text] [Related]
3. Waist circumference cut-off points for identification of abdominal obesity among the tunisian adult population. Bouguerra R; Alberti H; Smida H; Salem LB; Rayana CB; El Atti J; Achour A; Gaigi S; Slama CB; Zouari B; Alberti KG Diabetes Obes Metab; 2007 Nov; 9(6):859-68. PubMed ID: 17924868 [TBL] [Abstract][Full Text] [Related]
4. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: a prospective, longitudinal study. Wang H; Liu A; Zhao T; Gong X; Pang T; Zhou Y; Xiao Y; Yan Y; Fan C; Teng W; Lai Y; Shan Z BMJ Open; 2017 Sep; 7(9):e016062. PubMed ID: 28928179 [TBL] [Abstract][Full Text] [Related]
5. Waist circumference and BMI cut-off points to predict risk factors for metabolic syndrome among outpatients in a district hospital. Aye M; Sazali M Singapore Med J; 2012 Aug; 53(8):545-50. PubMed ID: 22941134 [TBL] [Abstract][Full Text] [Related]
6. The discriminative ability of waist circumference, body mass index and waist-to-hip ratio in identifying metabolic syndrome: Variations by age, sex and race. Cheong KC; Ghazali SM; Hock LK; Subenthiran S; Huey TC; Kuay LK; Mustapha FI; Yusoff AF; Mustafa AN Diabetes Metab Syndr; 2015; 9(2):74-8. PubMed ID: 25819369 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of anthropometric indices of obesity as correlates and potential predictors of risk for hypertension and prehypertension in a population in Nigeria. Ononamadu CJ; Ezekwesili CN; Onyeukwu OF; Umeoguaju UF; Ezeigwe OC; Ihegboro GO Cardiovasc J Afr; 2017 Mar/Apr 23; 28(2):92-99. PubMed ID: 27701484 [TBL] [Abstract][Full Text] [Related]
8. Ethnic and sex-specific cut-off values for adult obesity in the Suriname Health Study. Krishnadath ISK; Toelsie JR; Nahar-van Venrooij L; Hofman A; Jaddoe VWV Obes Res Clin Pract; 2018; 12(4):336-345. PubMed ID: 27720693 [TBL] [Abstract][Full Text] [Related]
9. Optimal cut-off of obesity indices to predict cardiovascular disease risk factors and metabolic syndrome among adults in Northeast China. Yu J; Tao Y; Tao Y; Yang S; Yu Y; Li B; Jin L BMC Public Health; 2016 Oct; 16(1):1079. PubMed ID: 27737656 [TBL] [Abstract][Full Text] [Related]
10. Anthropometric parameter that best predict metabolic syndrome in South west Nigeria. Adejumo EN; Adejumo AO; Azenabor A; Ekun AO; Enitan SS; Adebola OK; Ogundahunsi OA Diabetes Metab Syndr; 2019; 13(1):48-54. PubMed ID: 30641748 [TBL] [Abstract][Full Text] [Related]
11. A comparative evaluation of waist circumference, waist-to-hip ratio, waist-to-height ratio and body mass index as indicators of impaired glucose tolerance and as risk factors for type-2 diabetes mellitus. Łopatyński J; Mardarowicz G; Szcześniak G Ann Univ Mariae Curie Sklodowska Med; 2003; 58(1):413-9. PubMed ID: 15315025 [TBL] [Abstract][Full Text] [Related]
12. Trends and Cut-Point Changes in Obesity Parameters by Age Groups Considering Metabolic Syndrome. Park HJ; Hong YH; Cho YJ; Lee JE; Yun JM; Kwon H; Kim SH J Korean Med Sci; 2018 Feb; 33(7):e47. PubMed ID: 29359535 [TBL] [Abstract][Full Text] [Related]
13. The lipid accumulation product is a powerful tool to predict metabolic syndrome in undiagnosed Brazilian adults. Nascimento-Ferreira MV; Rendo-Urteaga T; Vilanova-Campelo RC; Carvalho HB; da Paz Oliveira G; Paes Landim MB; Torres-Leal FL Clin Nutr; 2017 Dec; 36(6):1693-1700. PubMed ID: 28081980 [TBL] [Abstract][Full Text] [Related]
14. Waist circumference and BMI cut-off based on 10-year cardiovascular risk: evidence for "central pre-obesity". Ko GT; Tang JS Obesity (Silver Spring); 2007 Nov; 15(11):2832-9. PubMed ID: 18070775 [TBL] [Abstract][Full Text] [Related]
16. Comparison of anthropometric indices (body mass index, waist circumference, waist to hip ratio and waist to height ratio) in predicting risk of type II diabetes in the population of Yazd, Iran. Mirzaei M; Khajeh M Diabetes Metab Syndr; 2018 Sep; 12(5):677-682. PubMed ID: 29680518 [TBL] [Abstract][Full Text] [Related]
17. Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: from the SAUDI-DM study. Al-Rubean K; Youssef AM; AlFarsi Y; Al-Sharqawi AH; Bawazeer N; AlOtaibi MT; AlRumaih FI; Zaidi MS Ann Saudi Med; 2017; 37(1):21-30. PubMed ID: 28151453 [TBL] [Abstract][Full Text] [Related]
18. Optimal cut-off values for obesity: using simple anthropometric indices to predict cardiovascular risk factors in Taiwan. Lin WY; Lee LT; Chen CY; Lo H; Hsia HH; Liu IL; Lin RS; Shau WY; Huang KC Int J Obes Relat Metab Disord; 2002 Sep; 26(9):1232-8. PubMed ID: 12187401 [TBL] [Abstract][Full Text] [Related]
19. Anthropometric indexes in the prediction of type 2 diabetes mellitus, hypertension and dyslipidaemia in a Mexican population. Berber A; Gómez-Santos R; Fanghänel G; Sánchez-Reyes L Int J Obes Relat Metab Disord; 2001 Dec; 25(12):1794-9. PubMed ID: 11781760 [TBL] [Abstract][Full Text] [Related]
20. References of anthropometric indices of central obesity and metabolic syndrome in Jordanian men and women. Al-Odat AZ; Ahmad MN; Haddad FH Diabetes Metab Syndr; 2012; 6(1):15-21. PubMed ID: 23014249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]