These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16937150)

  • 1. Diffusion with attrition.
    Grover NB
    J Math Biol; 2006 Dec; 53(6):889-903. PubMed ID: 16937150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion.
    Müller J; Van Saarloos W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061111. PubMed ID: 12188707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-limited forward rate constants in two dimensions. Application to the trapping of cell surface receptors by coated pits.
    Goldstein B; Griego R; Wofsy C
    Biophys J; 1984 Nov; 46(5):573-86. PubMed ID: 6149773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation approximation of solutions of a nonlinear inverse problem arising in olfaction experimentation.
    French DA; Edwards DA
    J Math Biol; 2007 Nov; 55(5-6):745-65. PubMed ID: 17589848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling.
    Sadegh Zadeh K; Montas HJ; Shirmohammadi A
    Theor Biol Med Model; 2006 Oct; 3():36. PubMed ID: 17034642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel.
    Wong CM; Rabl A; Thach TQ; Chau YK; Chan KP; Cowling BJ; Lai HK; Lam TH; McGhee SM; Anderson HR; Hedley AJ
    Res Rep Health Eff Inst; 2012 Aug; (170):5-91. PubMed ID: 23316618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion in a tube of varying cross section: numerical study of reduction to effective one-dimensional description.
    Berezhkovskii AM; Pustovoit MA; Bezrukov SM
    J Chem Phys; 2007 Apr; 126(13):134706. PubMed ID: 17430055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.
    Zhou HX; Szabo A
    Biophys J; 1996 Nov; 71(5):2440-57. PubMed ID: 8913584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements.
    Quintas C; Leyva JS; Sotoca R; Loureiro-Dias MC; Peinado JM
    Int J Food Microbiol; 2005 Apr; 100(1-3):125-30. PubMed ID: 15854698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phasic activation and state-dependent inhibition: an explicit solution for a three-state ion channel system.
    Uteshev VV; Pennefather PS
    J Theor Biol; 1996 Jul; 181(1):11-23. PubMed ID: 8796187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The parasite capacity of the host population].
    Kozminskiĭ EV
    Parazitologiia; 2002; 36(1):48-59. PubMed ID: 11965643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact solutions of kinetic equations in an autocatalytic growth model.
    Jędrak J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022132. PubMed ID: 23496484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitting numerical solutions of differential equations to experimental data: a case study and some general remarks.
    Dalgaard P; Larsen M
    Biometrics; 1990 Dec; 46(4):1097-109. PubMed ID: 2085627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple procedure for determining spatial and transient variations of cooling rate within a specimen during cryopreservation. Part 2: Graphical solutions.
    Diller KR
    Proc Inst Mech Eng H; 1990; 204(3):188-97. PubMed ID: 2133785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random walk in a two-dimensional self-affine random potential: Properties of the anomalous diffusion phase at small external force.
    Monthus C; Garel T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021125. PubMed ID: 20866793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Maxwell-Stefan approach to diffusion: a general resolution in the transient regime for one-dimensional systems.
    Leonardi E; Angeli C
    J Phys Chem B; 2010 Jan; 114(1):151-64. PubMed ID: 20000727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.