These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16937182)

  • 21. Directionally-sensitive peripheral nerve recording: bipolar nerve cuff design.
    Sabetian P; Popovic MR; Yoo PB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6178-6181. PubMed ID: 28269663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of differentially measuring afferent and efferent neural activity with a single nerve cuff electrode.
    Sabetian P; Yoo PB
    J Neural Eng; 2020 Jan; 17(1):016040. PubMed ID: 31698350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cuff electrodes for chronic stimulation and recording of peripheral nerve activity.
    Loeb GE; Peck RA
    J Neurosci Methods; 1996 Jan; 64(1):95-103. PubMed ID: 8869489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A nerve cuff technique for selective excitation of peripheral nerve trunk regions.
    Sweeney JD; Ksienski DA; Mortimer JT
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):706-15. PubMed ID: 2394459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conduction studies in peripheral cat nerve using implanted electrodes: I. Methods and findings in controls.
    Krarup C; Loeb GE
    Muscle Nerve; 1988 Sep; 11(9):922-32. PubMed ID: 3173415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective stimulation of pig radial nerve: comparison of 12-polar and 18-polar cuff electrodes.
    Schuettler M; Riso RR; Dalmose A; Stefania D; Stieglitz T
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():696-9. PubMed ID: 12465277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relevance of selective neural stimulation with a multicontact cuff electrode using multicriteria analysis.
    Dali M; William L; Tigra W; Taillades H; Rossel O; Azevedo C; Guiraud D
    PLoS One; 2019; 14(7):e0219079. PubMed ID: 31265480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the choice of reference on the selectivity of a multi-contact nerve cuff electrode.
    Koh RG; Zariffa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4443-4446. PubMed ID: 28269264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Models of the peripheral nerves for detection and control of neural activity.
    Durand D; Park HJ; Wodlinger B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3326-9. PubMed ID: 19964304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli.
    van den Honert C; Mortimer JT
    Science; 1979 Dec; 206(4424):1311-2. PubMed ID: 515733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.
    Deurloo KE; Holsheimer J; Boom HB
    Med Biol Eng Comput; 1998 Jan; 36(1):66-74. PubMed ID: 9614751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tripolar-cuff deviation from ideal model: assessment by bioelectric field simulations and saline-bath experiments.
    Triantis IF; Demosthenous A
    Med Eng Phys; 2008 Jun; 30(5):550-62. PubMed ID: 17689281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Localization and recovery of peripheral neural sources with beamforming algorithms.
    Wodlinger B; Durand DM
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):461-8. PubMed ID: 19840913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A low-noise preamplifier for nerve cuff electrodes.
    Sahin M
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):561-5. PubMed ID: 16425839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of nerve cuff geometry on interference reduction: a study by computer modeling.
    Rahal M; Taylor J; Donaldson N
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):136-8. PubMed ID: 10646289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.
    Wee AS; Jiles K; Brennan R
    Electromyogr Clin Neurophysiol; 2001; 41(3):153-8. PubMed ID: 11402507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated stimulus-response mapping of high-electrode-count neural implants.
    Wilder AM; Hiatt SD; Dowden BR; Brown NA; Normann RA; Clark GA
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):504-11. PubMed ID: 19666339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the number and location of recording contacts on the selectivity of a nerve cuff electrode.
    Zariffa J; Nagai MK; Daskalakis ZJ; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):420-7. PubMed ID: 19497824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural network classification of nerve activity recorded in a mixed nerve.
    Jezernik S; Grill WM; Sinkjaer T
    Neurol Res; 2001 Jul; 23(5):429-34. PubMed ID: 11474798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.