BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 16937405)

  • 1. Optimizing the rotor design for controlled-shear affinity filtration using computational fluid dynamics.
    Francis P; Martinez DM; Taghipour F; Bowen BD; Haynes CA
    Biotechnol Bioeng; 2006 Dec; 95(6):1207-17. PubMed ID: 16937405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up of controlled-shear affinity filtration using computational fluid dynamics.
    Francis P; Haynes CA
    Biotechnol J; 2009 May; 4(5):665-73. PubMed ID: 19452478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled shear affinity filtration (CSAF): a new technology for integration of cell separation and protein isolation from mammalian cell cultures.
    Vogel JH; Anspach B; Kroner KH; Piret JM; Haynes CA
    Biotechnol Bioeng; 2002 Jun; 78(7):806-14. PubMed ID: 12001173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFD-aided design of a dynamic filter for mammalian cell separation.
    Castilho LR; Anspach FB
    Biotechnol Bioeng; 2003 Sep; 83(5):514-24. PubMed ID: 12827693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
    Dwyer HA; Matthews PB; Azadani A; Jaussaud N; Ge L; Guy TS; Tseng EE
    Interact Cardiovasc Thorac Surg; 2009 Aug; 9(2):301-8. PubMed ID: 19414489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics for improved bioreactor design and 3D culture.
    Hutmacher DW; Singh H
    Trends Biotechnol; 2008 Apr; 26(4):166-72. PubMed ID: 18261813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid force predictions and experimental measurements for a magnetically levitated pediatric ventricular assist device.
    Throckmorton AL; Untaroiu A; Lim DS; Wood HG; Allaire PE
    Artif Organs; 2007 May; 31(5):359-68. PubMed ID: 17470205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump.
    Zhang J; Gellman B; Koert A; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2006 Mar; 30(3):168-77. PubMed ID: 16480391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of flow conditions in 2 L and 20 L wave bioreactors using computational fluid dynamics.
    Oncül AA; Kalmbach A; Genzel Y; Reichl U; Thévenin D
    Biotechnol Prog; 2010; 26(1):101-10. PubMed ID: 19918766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.
    Zhang J; Taskin ME; Koert A; Zhang T; Gellman B; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    Artif Organs; 2009 Oct; 33(10):805-17. PubMed ID: 19681842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra scale-down stress analysis of the bioprocessing of whole human cells as a basis for cancer vaccines.
    Acosta-Martinez JP; Papantoniou I; Lawrence K; Ward S; Hoare M
    Biotechnol Bioeng; 2010 Dec; 107(6):953-63. PubMed ID: 20677218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A passive magnetically and hydrodynamically suspended rotary blood pump.
    Stoiber M; Grasl C; Pirker S; Raderer F; Schistek R; Huber L; Gittler P; Schima H
    Artif Organs; 2009 Mar; 33(3):250-7. PubMed ID: 19245524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress gradient over endothelial cells in a curved microchannel system.
    Frame MD; Chapman GB; Makino Y; Sarelius IH
    Biorheology; 1998; 35(4-5):245-61. PubMed ID: 10474653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sinusoidal crossflow microfiltration device--experimental and computational flowfield analysis.
    Mielnik MM; Ekatpure RP; Saetran LR; Schönfeld F
    Lab Chip; 2005 Aug; 5(8):897-903. PubMed ID: 16027942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design optimization of blood shearing instrument by computational fluid dynamics.
    Wu J; Antaki JF; Snyder TA; Wagner WR; Borovetz HS; Paden BE
    Artif Organs; 2005 Jun; 29(6):482-9. PubMed ID: 15926986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the filtration performance of a plain wave fabric filter using response surface methodology.
    Qian F; Wang H
    J Hazard Mater; 2010 Apr; 176(1-3):559-68. PubMed ID: 20004514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microchannel emulsification: from computational fluid dynamics to predictive analytical model.
    van Dijke KC; Schroën KC; Boom RM
    Langmuir; 2008 Sep; 24(18):10107-15. PubMed ID: 18702473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.