These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of host populations on the intensity of ticks and the prevalence of tick-borne pathogens: how to interpret the results of deer exclosure experiments. Pugliese A; Rosà R Parasitology; 2008 Nov; 135(13):1531-44. PubMed ID: 18442427 [TBL] [Abstract][Full Text] [Related]
3. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Bolzoni L; Rosà R; Cagnacci F; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):373-81. PubMed ID: 22429768 [TBL] [Abstract][Full Text] [Related]
4. Effects of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. I: empirical assessment. Cagnacci F; Bolzoni L; Rosà R; Carpi G; Hauffe HC; Valent M; Tagliapietra V; Kazimirova M; Koci J; Stanko M; Lukan M; Henttonen H; Rizzoli A Int J Parasitol; 2012 Apr; 42(4):365-72. PubMed ID: 22464896 [TBL] [Abstract][Full Text] [Related]
5. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Rosà R; Pugliese A; Ghosh M; Perkins SE; Rizzoli A Vector Borne Zoonotic Dis; 2007; 7(3):285-95. PubMed ID: 17760511 [TBL] [Abstract][Full Text] [Related]
6. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Jaenson TGT; Petersson EH; Jaenson DGE; Kindberg J; Pettersson JH; Hjertqvist M; Medlock JM; Bengtsson H Parasit Vectors; 2018 Aug; 11(1):477. PubMed ID: 30153856 [TBL] [Abstract][Full Text] [Related]
7. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland. Burri C; Bastic V; Maeder G; Patalas E; Gern L J Med Entomol; 2011 May; 48(3):615-27. PubMed ID: 21661323 [TBL] [Abstract][Full Text] [Related]
8. Reduced abundance of Ixodes scapularis (Acari: Ixodidae) with exclusion of deer by electric fencing. Stafford KC J Med Entomol; 1993 Nov; 30(6):986-96. PubMed ID: 8271257 [TBL] [Abstract][Full Text] [Related]
9. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia. Jemeršić L; Dežđek D; Brnić D; Prpić J; Janicki Z; Keros T; Roić B; Slavica A; Terzić S; Konjević D; Beck R Ticks Tick Borne Dis; 2014 Feb; 5(1):7-13. PubMed ID: 24035586 [TBL] [Abstract][Full Text] [Related]
10. Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and Lyme disease risk by deer exclusion. Daniels TJ; Fish D; Schwartz I J Med Entomol; 1993 Nov; 30(6):1043-9. PubMed ID: 8271246 [TBL] [Abstract][Full Text] [Related]
11. Effect of deer exclusion on the abundance of immature Ixodes scapularis (Acari: Ixodidae) parasitizing small and medium-sized mammals. Daniels TJ; Fish D J Med Entomol; 1995 Jan; 32(1):5-11. PubMed ID: 7869342 [TBL] [Abstract][Full Text] [Related]
12. Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Kiffner C; Vor T; Hagedorn P; Niedrig M; Rühe F Parasitol Res; 2011 Feb; 108(2):323-35. PubMed ID: 20878183 [TBL] [Abstract][Full Text] [Related]
13. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Kriz B; Daniel M; Benes C; Maly M Vector Borne Zoonotic Dis; 2014 Nov; 14(11):801-7. PubMed ID: 25409271 [TBL] [Abstract][Full Text] [Related]
14. Determinants of tick-borne encephalitis virus antibody presence in roe deer (Capreolus capreolus) sera. Kiffner C; Vor T; Hagedorn P; Niedrig M; Rühe F Med Vet Entomol; 2012 Mar; 26(1):18-25. PubMed ID: 21592155 [TBL] [Abstract][Full Text] [Related]
15. Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. Knap N; Avšič-Županc T PLoS One; 2013; 8(6):e66380. PubMed ID: 23776668 [TBL] [Abstract][Full Text] [Related]
16. No net effect of host density on tick-borne disease hazard due to opposing roles of vector amplification and pathogen dilution. Gandy S; Kilbride E; Biek R; Millins C; Gilbert L Ecol Evol; 2022 Sep; 12(9):e9253. PubMed ID: 36091342 [TBL] [Abstract][Full Text] [Related]
17. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Randolph SE; Miklisová D; Lysy J; Rogers DJ; Labuda M Parasitology; 1999 Feb; 118 ( Pt 2)():177-86. PubMed ID: 10028532 [TBL] [Abstract][Full Text] [Related]
18. Continued expansion of tick-borne pathogens: Tick-borne encephalitis virus complex and Anaplasma phagocytophilum in Denmark. Andersen NS; Larsen SL; Olesen CR; Stiasny K; Kolmos HJ; Jensen PM; Skarphédinsson S Ticks Tick Borne Dis; 2019 Jan; 10(1):115-123. PubMed ID: 30245088 [TBL] [Abstract][Full Text] [Related]
19. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Hofmeester TR; Sprong H; Jansen PA; Prins HHT; van Wieren SE Parasit Vectors; 2017 Sep; 10(1):433. PubMed ID: 28927432 [TBL] [Abstract][Full Text] [Related]
20. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Perez G; Bastian S; Agoulon A; Bouju A; Durand A; Faille F; Lebert I; Rantier Y; Plantard O; Butet A Parasit Vectors; 2016 Jan; 9():20. PubMed ID: 26767788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]