These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 16937657)
41. [Anaerobic fermentation biohydrogen production from molasses, starch and milk wastewaters]. Liu M; Ren NQ; Ding J; Li YF; Xu LY Huan Jing Ke Xue; 2004 Sep; 25(5):65-9. PubMed ID: 15623025 [TBL] [Abstract][Full Text] [Related]
42. Production & formulation of Bacillus thuringiensis var. israelensis & B. sphaericus 1593. Desai SY; Shethna YI Indian J Med Res; 1991 Sep; 93():318-23. PubMed ID: 1778620 [TBL] [Abstract][Full Text] [Related]
43. Scale-up of biopesticide production processes using wastewater sludge as a raw material. Yezza A; Tyagi RD; Valèro JR; Surampalli RY; Smith J J Ind Microbiol Biotechnol; 2004 Dec; 31(12):545-52. PubMed ID: 15662544 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869 [TBL] [Abstract][Full Text] [Related]
45. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Raymond B; Lijek RS; Griffiths RI; Bonsall MB J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180 [TBL] [Abstract][Full Text] [Related]
46. Laboratory and field tests of spray-dried and granular formulations of a Bacillus thuringiensis strain with insecticidal activity against the sugarcane borer. Rosas-García NM Pest Manag Sci; 2006 Sep; 62(9):855-61. PubMed ID: 16786544 [TBL] [Abstract][Full Text] [Related]
47. Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris). Mommaerts V; Jans K; Smagghe G Pest Manag Sci; 2010 May; 66(5):520-5. PubMed ID: 20024947 [TBL] [Abstract][Full Text] [Related]
48. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Janmaat AF; Myers J Proc Biol Sci; 2003 Nov; 270(1530):2263-70. PubMed ID: 14613613 [TBL] [Abstract][Full Text] [Related]
49. Evaluation of polymer-based granular formulations of Bacillus thuringiensis israelensis against larval Aedes aegypti in the laboratory. Maldonado Blanco MG; Galán Wong LJ; Rodríguez Padilla C; Quiroz Martínez H J Am Mosq Control Assoc; 2002 Dec; 18(4):352-8. PubMed ID: 12542194 [TBL] [Abstract][Full Text] [Related]
51. Cost-effective production of Bacillus thuringiensis by solid-state fermentation. Devi PS; Ravinder T; Jaidev C J Invertebr Pathol; 2005 Feb; 88(2):163-8. PubMed ID: 15766933 [TBL] [Abstract][Full Text] [Related]
52. Effects of sublethal concentrations of Bacillus thuringiensis on larval development of Sesamia nonagrioides. Eizaguirre M; Tort S; López C; Albajes R J Econ Entomol; 2005 Apr; 98(2):464-70. PubMed ID: 15889739 [TBL] [Abstract][Full Text] [Related]
53. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae). Shishir MA; Akter A; Bodiuzzaman M; Hossain MA; Alam MM; Khan SA; Khan SN; Hoq MM Biocontrol Sci; 2015; 20(2):115-23. PubMed ID: 26133509 [TBL] [Abstract][Full Text] [Related]
54. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Roh JY; Choi JY; Li MS; Jin BR; Je YH J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264 [TBL] [Abstract][Full Text] [Related]
55. Variation in the susceptibility of the forest tent caterpillar (Lepidoptera: Lasiocampidae) to Bacillus thuringiensis variety kurstaki HD-1: effect of the host plant. Kouassi KC; Lorenzetti F; Guertin C; Cabana J; Mauffette Y J Econ Entomol; 2001 Oct; 94(5):1135-41. PubMed ID: 11681676 [TBL] [Abstract][Full Text] [Related]
56. Production of biopesticides using wastewater sludge as a raw material--effect of process parameters. Tirado Montiel ML; Tyagi RD; Valero JR; Surampalli RY Water Sci Technol; 2003; 48(8):239-46. PubMed ID: 14682592 [TBL] [Abstract][Full Text] [Related]
57. Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: effects of heavy metals. Zhuang L; Zhou S; Wang Y; Liu Z; Xu R Bioresour Technol; 2011 Apr; 102(7):4820-6. PubMed ID: 21295967 [TBL] [Abstract][Full Text] [Related]
58. Activity of Bacillus thuringiensis Cry1Ie2, Cry2Ac7, Vip3Aa11 and Cry7Ab3 proteins against Anticarsia gemmatalis, Chrysodeixis includens and Ceratoma trifurcata. Mushtaq R; Behle R; Liu R; Niu L; Song P; Shakoori AR; Jurat-Fuentes JL J Invertebr Pathol; 2017 Nov; 150():70-72. PubMed ID: 28919015 [TBL] [Abstract][Full Text] [Related]
59. Susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) populations in Mexico to commercial formulations of Bacillus thuringiensis. Díaz-Gomez O; Rodríguez JC; Shelton AM; Lagunes A; Bujanos R J Econ Entomol; 2000 Jun; 93(3):963-70. PubMed ID: 10902356 [TBL] [Abstract][Full Text] [Related]
60. Protection from ultraviolet irradiation by melanin of mosquitocidal activity of Bacillus thuringiensis var. israelensis. Liu YT; Sui MJ; Ji DD; Wu IH; Chou CC; Chen CC J Invertebr Pathol; 1993 Sep; 62(2):131-6. PubMed ID: 8228318 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]