BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16938097)

  • 21. The Aedes aegypti glutathione transferase family.
    Lumjuan N; Stevenson BJ; Prapanthadara LA; Somboon P; Brophy PM; Loftus BJ; Severson DW; Ranson H
    Insect Biochem Mol Biol; 2007 Oct; 37(10):1026-35. PubMed ID: 17785190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redesign of substrate-selectivity determining modules of glutathione transferase A1-1 installs high catalytic efficiency with toxic alkenal products of lipid peroxidation.
    Nilsson LO; Gustafsson A; Mannervik B
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9408-12. PubMed ID: 10900265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A functionally conserved basic residue in glutathione transferases interacts with the glycine moiety of glutathione and is pivotal for enzyme catalysis.
    Vararattanavech A; Ketterman AJ
    Biochem J; 2007 Sep; 406(2):247-56. PubMed ID: 17523921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural evidence for conformational changes of Delta class glutathione transferases after ligand binding.
    Wongsantichon J; Robinson RC; Ketterman AJ
    Arch Biochem Biophys; 2012 May; 521(1-2):77-83. PubMed ID: 22475449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I.
    Labrou NE; Kotzia GA; Clonis YD
    Protein Eng Des Sel; 2004 Oct; 17(10):741-8. PubMed ID: 15556969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel class of glutathione transferases from cyanobacteria exhibit high catalytic activities towards naturally occurring isothiocyanates.
    Wiktelius E; Stenberg G
    Biochem J; 2007 Aug; 406(1):115-23. PubMed ID: 17484723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diverging catalytic capacities and selectivity profiles with haloalkane substrates of chimeric alpha class glutathione transferases.
    Kurtovic S; Shokeer A; Mannervik B
    Protein Eng Des Sel; 2008 May; 21(5):329-41. PubMed ID: 18356169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the role of two conserved active-site residues in beta class glutathione S-transferases.
    Allocati N; Casalone E; Masulli M; Polekhina G; Rossjohn J; Parker MW; Di Ilio C
    Biochem J; 2000 Oct; 351 Pt 2(Pt 2):341-6. PubMed ID: 11023819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of a heterodimeric 23/20-kDa proteolytic fragment of bacterial glutathione transferase B1-1.
    Aceto A; Dragani B; Allocati N; Masulli M; Petruzzelli R; Di Ilio C
    Arch Biochem Biophys; 1996 Apr; 328(2):302-8. PubMed ID: 8645008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterodimers of glutathione S-transferase can form between isoenzyme classes pi and mu.
    Pettigrew NE; Colman RF
    Arch Biochem Biophys; 2001 Dec; 396(2):225-30. PubMed ID: 11747301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene isolation and expression analysis of two distinct sweet orange [Citrus sinensis L. (Osbeck)] tau-type glutathione transferases.
    Lo Piero AR; Mercurio V; Puglisi I; Petrone G
    Gene; 2009 Aug; 443(1-2):143-50. PubMed ID: 19422890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mosquito glutathione transferases.
    Ranson H; Hemingway J
    Methods Enzymol; 2005; 401():226-41. PubMed ID: 16399389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytically active monomer of class mu glutathione transferase from rat.
    Hearne JL; Colman RF
    Biochemistry; 2006 May; 45(19):5974-84. PubMed ID: 16681369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glutamate-64, a newly identified residue of the functionally conserved electron-sharing network contributes to catalysis and structural integrity of glutathione transferases.
    Winayanuwattikun P; Ketterman AJ
    Biochem J; 2007 Mar; 402(2):339-48. PubMed ID: 17100654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Guinea pig liver Mu-class glutathione S-transferase M1-2 cross-reacts with antibodies to both rat Mu- and theta-class glutathione S-transferases.
    Hiratsuka A; Ogura K; Fujioka H; Sakamoto Y; Okuda H; Wada K; Tanaka T; Nishiyama T; Watabe T
    Arch Biochem Biophys; 1998 Jun; 354(1):188-96. PubMed ID: 9633615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant glutathione transferases.
    Edwards R; Dixon DP
    Methods Enzymol; 2005; 401():169-86. PubMed ID: 16399386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for catalytic differences between alpha class human glutathione transferases hGSTA1-1 and hGSTA2-2 for glutathione conjugation of environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide.
    Singh SV; Varma V; Zimniak P; Srivastava SK; Marynowski SW; Desai D; Amin S; Ji X
    Biochemistry; 2004 Aug; 43(30):9708-15. PubMed ID: 15274625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of bromosulphophthalein binding to human glutathione S-transferase A1-1: thermodynamics and inhibition kinetics.
    Kolobe D; Sayed Y; Dirr HW
    Biochem J; 2004 Sep; 382(Pt 2):703-9. PubMed ID: 15147239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional studies of single-nucleotide polymorphic variants of human glutathione transferase T1-1 involving residues in the dimer interface.
    Josephy PD; Pan D; Ianni MD; Mannervik B
    Arch Biochem Biophys; 2011 Sep; 513(2):87-93. PubMed ID: 21781954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products.
    Agianian B; Tucker PA; Schouten A; Leonard K; Bullard B; Gros P
    J Mol Biol; 2003 Feb; 326(1):151-65. PubMed ID: 12547198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.