These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 16938874)
1. Fluorogenic metabolic probes for direct activity readout of redox enzymes: Selective measurement of human AKR1C2 in living cells. Yee DJ; Balsanek V; Bauman DR; Penning TM; Sames D Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13304-9. PubMed ID: 16938874 [TBL] [Abstract][Full Text] [Related]
2. Expanding the use of fluorogenic enzyme reporter substrates to imaging metabolic flux changes: the activity measurement of 5α-steroid reductase in intact mammalian cells. Rodriguez PC; Yee DJ; Sames D ACS Chem Biol; 2010 Nov; 5(11):1045-52. PubMed ID: 20863068 [TBL] [Abstract][Full Text] [Related]
3. Imaging induction of cytoprotective enzymes in intact human cells: coumberone, a metabolic reporter for human AKR1C enzymes reveals activation by panaxytriol, an active component of red ginseng. Halim M; Yee DJ; Sames D J Am Chem Soc; 2008 Oct; 130(43):14123-8. PubMed ID: 18826220 [TBL] [Abstract][Full Text] [Related]
4. Human type 3 3alpha-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells. Rizner TL; Lin HK; Peehl DM; Steckelbroeck S; Bauman DR; Penning TM Endocrinology; 2003 Jul; 144(7):2922-32. PubMed ID: 12810547 [TBL] [Abstract][Full Text] [Related]
5. New tools for molecular imaging of redox metabolism: development of a fluorogenic probe for 3 alpha-hydroxysteroid dehydrogenases. Yee DJ; Balsanek V; Sames D J Am Chem Soc; 2004 Mar; 126(8):2282-3. PubMed ID: 14982413 [TBL] [Abstract][Full Text] [Related]
6. The effect of allelic variation in aldo-keto reductase 1C2 on the in vitro metabolism of dihydrotestosterone. Takahashi RH; Grigliatti TA; Reid RE; Riggs KW J Pharmacol Exp Ther; 2009 Jun; 329(3):1032-9. PubMed ID: 19258517 [TBL] [Abstract][Full Text] [Related]
7. Aldo-keto reductases (AKR) from the AKR1C subfamily catalyze the carbonyl reduction of the novel anticancer drug oracin in man. Wsol V; Szotakova B; Martin HJ; Maser E Toxicology; 2007 Sep; 238(2-3):111-8. PubMed ID: 17618725 [TBL] [Abstract][Full Text] [Related]
8. Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily. Ruiz FX; Porté S; Gallego O; Moro A; Ardèvol A; Del Río-Espínola A; Rovira C; Farrés J; Parés X Biochem J; 2011 Dec; 440(3):335-44. PubMed ID: 21851338 [TBL] [Abstract][Full Text] [Related]
9. Design of optical switches as metabolic indicators: new fluorogenic probes for monoamine oxidases (MAO A and B). Chen G; Yee DJ; Gubernator NG; Sames D J Am Chem Soc; 2005 Apr; 127(13):4544-5. PubMed ID: 15796498 [TBL] [Abstract][Full Text] [Related]
10. Androgen inactivation and steroid-converting enzyme expression in abdominal adipose tissue in men. Blouin K; Richard C; Brochu G; Hould FS; Lebel S; Marceau S; Biron S; Luu-The V; Tchernof A J Endocrinol; 2006 Dec; 191(3):637-49. PubMed ID: 17170221 [TBL] [Abstract][Full Text] [Related]
11. Tibolone is metabolized by the 3alpha/3beta-hydroxysteroid dehydrogenase activities of the four human isozymes of the aldo-keto reductase 1C subfamily: inversion of stereospecificity with a delta5(10)-3-ketosteroid. Steckelbroeck S; Jin Y; Oyesanmi B; Kloosterboer HJ; Penning TM Mol Pharmacol; 2004 Dec; 66(6):1702-11. PubMed ID: 15383625 [TBL] [Abstract][Full Text] [Related]
12. Selective reduction of AKR1C2 in prostate cancer and its role in DHT metabolism. Ji Q; Chang L; VanDenBerg D; Stanczyk FZ; Stolz A Prostate; 2003 Mar; 54(4):275-89. PubMed ID: 12539226 [TBL] [Abstract][Full Text] [Related]
13. Comparisons of (+/-)-benzo[a]pyrene-trans-7,8-dihydrodiol activation by human cytochrome P450 and aldo-keto reductase enzymes: effect of redox state and expression levels. Quinn AM; Penning TM Chem Res Toxicol; 2008 May; 21(5):1086-94. PubMed ID: 18402469 [TBL] [Abstract][Full Text] [Related]
14. Redox-Responsive Fluorescent Probes with Different Design Strategies. Lou Z; Li P; Han K Acc Chem Res; 2015 May; 48(5):1358-68. PubMed ID: 25901910 [TBL] [Abstract][Full Text] [Related]
15. Molecular docking simulations of steroid substrates into human cytosolic hydroxysteroid dehydrogenases (AKR1C1 and AKR1C2): insights into positional and stereochemical preferences. Jin Y; Penning TM Steroids; 2006 May; 71(5):380-91. PubMed ID: 16455123 [TBL] [Abstract][Full Text] [Related]
16. Harnessing functional plasticity of enzymes: a fluorogenic probe for imaging 17beta-HSD10 dehydrogenase, an enzyme involved in Alzheimer's and Parkinson's diseases. Froemming MK; Sames D J Am Chem Soc; 2007 Nov; 129(46):14518-22. PubMed ID: 17958419 [TBL] [Abstract][Full Text] [Related]
17. Design and synthesis of highly sensitive fluorogenic substrates for glutathione S-transferase and application for activity imaging in living cells. Fujikawa Y; Urano Y; Komatsu T; Hanaoka K; Kojima H; Terai T; Inoue H; Nagano T J Am Chem Soc; 2008 Nov; 130(44):14533-43. PubMed ID: 18841967 [TBL] [Abstract][Full Text] [Related]
18. Important roles of the AKR1C2 and SRD5A1 enzymes in progesterone metabolism in endometrial cancer model cell lines. Sinreih M; Anko M; Zukunft S; Adamski J; Rižner TL Chem Biol Interact; 2015 Jun; 234():297-308. PubMed ID: 25463305 [TBL] [Abstract][Full Text] [Related]
19. Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins. Penning TM; Jin Y; Steckelbroeck S; Lanisnik Rizner T; Lewis M Mol Cell Endocrinol; 2004 Feb; 215(1-2):63-72. PubMed ID: 15026176 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sensitivity and precision in an enzyme-linked immunosorbent assay with fluorogenic substrates compared with commonly used chromogenic substrates. Meng Y; High K; Antonello J; Washabaugh MW; Zhao Q Anal Biochem; 2005 Oct; 345(2):227-36. PubMed ID: 16137635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]