These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16938893)

  • 21. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction.
    Huang KS; Carrasco N; Pfund E; Strobel SA
    Biochemistry; 2008 Aug; 47(34):8822-7. PubMed ID: 18672893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ribosome as a versatile catalyst: reactions at the peptidyl transferase center.
    Rodnina MV
    Curr Opin Struct Biol; 2013 Aug; 23(4):595-602. PubMed ID: 23711800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu.
    Dinos G; Kalpaxis DL; Wilson DN; Nierhaus KH
    Nucleic Acids Res; 2005; 33(16):5291-6. PubMed ID: 16166657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanism of peptide bond formation on the ribosome--controversions].
    Bakowska-Zywicka K; Tyczewska A; Twardowski T
    Postepy Biochem; 2006; 52(2):166-72. PubMed ID: 17078506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome.
    Polikanov YS; Steitz TA; Innis CA
    Nat Struct Mol Biol; 2014 Sep; 21(9):787-93. PubMed ID: 25132179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide-bond formation, chirality discrimination and antibiotics synergism.
    Agmon I; Amit M; Auerbach T; Bashan A; Baram D; Bartels H; Berisio R; Greenberg I; Harms J; Hansen HA; Kessler M; Pyetan E; Schluenzen F; Sittner A; Yonath A; Zarivach R
    FEBS Lett; 2004 Jun; 567(1):20-6. PubMed ID: 15165888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates.
    Wohlgemuth I; Brenner S; Beringer M; Rodnina MV
    J Biol Chem; 2008 Nov; 283(47):32229-35. PubMed ID: 18809677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation.
    Simonović M; Steitz TA
    Biochim Biophys Acta; 2009; 1789(9-10):612-23. PubMed ID: 19595805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects.
    Baram D; Yonath A
    FEBS Lett; 2005 Feb; 579(4):948-54. PubMed ID: 15680980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA.
    Schmeing TM; Huang KS; Strobel SA; Steitz TA
    Nature; 2005 Nov; 438(7067):520-4. PubMed ID: 16306996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptidyl transferase center decompaction and structural constraints during early protein elongation on the ribosome.
    Jia B; Wang T; Lehmann J
    Sci Rep; 2021 Dec; 11(1):24061. PubMed ID: 34911999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome.
    Byun BJ; Kang YK
    Phys Chem Chem Phys; 2013 Sep; 15(36):14931-5. PubMed ID: 23900690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of peptide bond synthesis on the ribosome.
    Trobro S; Aqvist J
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12395-400. PubMed ID: 16116099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. After the ribosome structures: how does peptidyl transferase work?
    Moore PB; Steitz TA
    RNA; 2003 Feb; 9(2):155-9. PubMed ID: 12554855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide bond formation on the ribosome: structure and mechanism.
    Rodnina MV; Wintermeyer W
    Curr Opin Struct Biol; 2003 Jun; 13(3):334-40. PubMed ID: 12831884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.
    Carrasco N; Hiller DA; Strobel SA
    Biochemistry; 2011 Dec; 50(48):10491-8. PubMed ID: 22035282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome?
    Sharma PK; Xiang Y; Kato M; Warshel A
    Biochemistry; 2005 Aug; 44(34):11307-14. PubMed ID: 16114867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum mechanical study on the mechanism of peptide release in the ribosome.
    Acosta-Silva C; Bertran J; Branchadell V; Oliva A
    J Phys Chem B; 2013 Apr; 117(13):3503-15. PubMed ID: 23442058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of intraribosomal part of nascent polypeptide.
    Kolb VA
    Biochemistry (Mosc); 2010 Dec; 75(13):1517-27. PubMed ID: 21417992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.