These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16939151)

  • 1. Joint torque and mechanical energy flow in the support legs of skilled race walkers.
    Hoga K; Ae M; Enomoto Y; Yokozawa T; Fujii N
    Sports Biomech; 2006 Jul; 5(2):167-82. PubMed ID: 16939151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical energy flow in the recovery leg of elite race walkers.
    Hoga K; Ae M; Enomoto Y; Fujii N
    Sports Biomech; 2003 Jan; 2(1):1-13. PubMed ID: 14658242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of lower limb work-energy patterns in world-class race walkers.
    Hanley B; Bissas A
    J Sports Sci; 2017 May; 35(10):960-966. PubMed ID: 27388971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of lower limb internal kinetics and electromyography in elite race walking.
    Hanley B; Bissas A
    J Sports Sci; 2013; 31(11):1222-32. PubMed ID: 23464365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of the function of the upper body for elite race walkers during official men 20 km walking race.
    Hoga-Miura K; Ae M; Fujii N; Yokozawa T
    J Sports Med Phys Fitness; 2016 Oct; 56(10):1147-1155. PubMed ID: 26364687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
    Chang R; Rodrigues PA; Van Emmerik RE; Hamill J
    J Biomech; 2014 Aug; 47(11):2571-7. PubMed ID: 24992816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between hip, knee and ankle muscle mechanical characteristics and gait transition speed.
    Ranisavljev I; Ilic V; Markovic S; Soldatovic I; Stefanovic D; Jaric S
    Hum Mov Sci; 2014 Dec; 38():47-57. PubMed ID: 25244181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinetic function of the lumbo-pelvic-hip complex during block start.
    Sado N; Yoshioka S; Fukashiro S
    PLoS One; 2020; 15(3):e0230145. PubMed ID: 32163481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The motor and the brake of the trailing leg in human walking: transtibial amputation limits ankle-knee torque covariation.
    Toney-Bolger ME; Chang YH
    Exp Brain Res; 2023 Jan; 241(1):161-174. PubMed ID: 36411328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait.
    Wesseling M; de Groote F; Jonkers I
    J Biomech; 2014 Jan; 47(2):596-601. PubMed ID: 24332615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative kinematics of two walking frame gaits.
    Crosbie J
    J Orthop Sports Phys Ther; 1994 Oct; 20(4):186-92. PubMed ID: 7987378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences between motion capture and video analysis systems in calculating knee angles in elite-standard race walking.
    Hanley B; Tucker CB; Bissas A
    J Sports Sci; 2018 Jun; 36(11):1250-1255. PubMed ID: 28850306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variables during swing associated with decreased impact peak and loading rate in running.
    Schmitz A; Pohl MB; Woods K; Noehren B
    J Biomech; 2014 Jan; 47(1):32-8. PubMed ID: 24200340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtalar joint kinematic correlations with footprint arch index in race walkers.
    Elvira JL; Vera-GarcĂ­a FJ; Meana M
    J Sports Med Phys Fitness; 2008 Jun; 48(2):225-34. PubMed ID: 18427419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.