These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 16939151)
21. A Forward Dynamic Modelling Investigation of Cause-and-Effect Relationships in Single Support Phase of Human Walking. McGrath M; Howard D; Baker R Comput Math Methods Med; 2015; 2015():383705. PubMed ID: 26175797 [TBL] [Abstract][Full Text] [Related]
22. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Marques NR; LaRoche DP; Hallal CZ; Crozara LF; Morcelli MH; Karuka AH; Navega MT; Gonçalves M Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):330-6. PubMed ID: 23391513 [TBL] [Abstract][Full Text] [Related]
23. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners. Wu G; Millon D Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415 [TBL] [Abstract][Full Text] [Related]
25. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking. Huang TW; Shorter KA; Adamczyk PG; Kuo AD J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330 [TBL] [Abstract][Full Text] [Related]
26. The influence of sagittal center of pressure offset on gait kinematics and kinetics. Haim A; Rozen N; Wolf A J Biomech; 2010 Mar; 43(5):969-77. PubMed ID: 20047747 [TBL] [Abstract][Full Text] [Related]
27. Increased power generation in impaired lower extremities correlated with changes in walking speeds in sub-acute stroke patients. Brincks J; Nielsen JF Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):138-44. PubMed ID: 21899933 [TBL] [Abstract][Full Text] [Related]
28. Energy neutral: the human foot and ankle subsections combine to produce near zero net mechanical work during walking. Takahashi KZ; Worster K; Bruening DA Sci Rep; 2017 Nov; 7(1):15404. PubMed ID: 29133920 [TBL] [Abstract][Full Text] [Related]
29. Energetics of actively powered locomotion using the simplest walking model. Kuo AD J Biomech Eng; 2002 Feb; 124(1):113-20. PubMed ID: 11871597 [TBL] [Abstract][Full Text] [Related]
30. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model. Jenkyn TR; Shultz R; Giffin JR; Birmingham TB Gait Posture; 2010 Feb; 31(2):153-8. PubMed ID: 19897368 [TBL] [Abstract][Full Text] [Related]
31. Control of interjoint coordination during the swing phase of normal gait at different speeds. Shemmell J; Johansson J; Portra V; Gottlieb GL; Thomas JS; Corcos DM J Neuroeng Rehabil; 2007 Apr; 4():10. PubMed ID: 17466065 [TBL] [Abstract][Full Text] [Related]
32. The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance. Toney ME; Chang YH Exp Brain Res; 2016 Oct; 234(10):3011-23. PubMed ID: 27334888 [TBL] [Abstract][Full Text] [Related]
33. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking. Takahashi KZ; Gross MT; van Werkhoven H; Piazza SJ; Sawicki GS Sci Rep; 2016 Jul; 6():29870. PubMed ID: 27417976 [TBL] [Abstract][Full Text] [Related]
34. Lower extremity mechanics and energy cost of walking in high-heeled shoes. Ebbeling CJ; Hamill J; Crussemeyer JA J Orthop Sports Phys Ther; 1994 Apr; 19(4):190-6. PubMed ID: 8173565 [TBL] [Abstract][Full Text] [Related]
35. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry. Xu Y; Hou Q; Wang C; Simpson T; Bennett B; Russell S Biomed Res Int; 2017; 2017():4316821. PubMed ID: 29214168 [TBL] [Abstract][Full Text] [Related]
36. How Much Clinical and Functional Impairment do Children Treated With Knee Rotationplasty Experience in Adulthood? Benedetti MG; Okita Y; Recubini E; Mariani E; Leardini A; Manfrini M Clin Orthop Relat Res; 2016 Apr; 474(4):995-1004. PubMed ID: 26754115 [TBL] [Abstract][Full Text] [Related]
37. Kinematic coordination in human gait: relation to mechanical energy cost. Bianchi L; Angelini D; Orani GP; Lacquaniti F J Neurophysiol; 1998 Apr; 79(4):2155-70. PubMed ID: 9535975 [TBL] [Abstract][Full Text] [Related]
38. Locomotor strategies in obese and non-obese children. Nantel J; Brochu M; Prince F Obesity (Silver Spring); 2006 Oct; 14(10):1789-94. PubMed ID: 17062809 [TBL] [Abstract][Full Text] [Related]
39. Muscle force redistributes segmental power for body progression during walking. Neptune RR; Zajac FE; Kautz SA Gait Posture; 2004 Apr; 19(2):194-205. PubMed ID: 15013508 [TBL] [Abstract][Full Text] [Related]
40. Individuals with multiple sclerosis redistribute positive mechanical work from the ankle to the hip during walking. Davies BL; Hoffman RM; Kurz MJ Gait Posture; 2016 Sep; 49():329-333. PubMed ID: 27479218 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]