BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16939201)

  • 1. Role of the PEWY glutamate in hydroquinone-quinone oxidation-reduction catalysis in the Qo Site of cytochrome bc1.
    Osyczka A; Zhang H; Mathé C; Rich PR; Moser CC; Dutton PL
    Biochemistry; 2006 Sep; 45(35):10492-503. PubMed ID: 16939201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between the cytochrome b, cytochrome c1, and Fe-S protein subunits at the ubihydroquinone oxidation site of the bc1 complex of Rhodobacter capsulatus.
    Saribaş AS; Valkova-Valchanova M; Tokito MK; Zhang Z; Berry EA; Daldal F
    Biochemistry; 1998 Jun; 37(22):8105-14. PubMed ID: 9609705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible redox energy coupling in electron transfer chains.
    Osyczka A; Moser CC; Daldal F; Dutton PL
    Nature; 2004 Feb; 427(6975):607-12. PubMed ID: 14961113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q
    Francia F; Malferrari M; Lanciano P; Steimle S; Daldal F; Venturoli G
    Biochim Biophys Acta; 2016 Nov; 1857(11):1796-1806. PubMed ID: 27550309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex.
    Cooley JW; Ohnishi T; Daldal F
    Biochemistry; 2005 Aug; 44(31):10520-32. PubMed ID: 16060661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytochrome b lysine 329 residue is critical for ubihydroquinone oxidation and proton release at the Q
    Francia F; Khalfaoui-Hassani B; Lanciano P; Musiani F; Noodleman L; Venturoli G; Daldal F
    Biochim Biophys Acta Bioenerg; 2019 Feb; 1860(2):167-179. PubMed ID: 30550726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Across membrane communication between the Q(o) and Q(i) active sites of cytochrome bc(1).
    Cooley JW; Lee DW; Daldal F
    Biochemistry; 2009 Mar; 48(9):1888-99. PubMed ID: 19254042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The raised midpoint potential of the [2Fe2S] cluster of cytochrome bc1 is mediated by both the Qo site occupants and the head domain position of the Fe-S protein subunit.
    Cooley JW; Roberts AG; Bowman MK; Kramer DM; Daldal F
    Biochemistry; 2004 Mar; 43(8):2217-27. PubMed ID: 14979718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein interactions between cytochrome b and the Fe-S protein subunits during QH2 oxidation and large-scale domain movement in the bc1 complex.
    Darrouzet E; Daldal F
    Biochemistry; 2003 Feb; 42(6):1499-507. PubMed ID: 12578362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.
    Kuleta P; Sarewicz M; Postila P; Róg T; Osyczka A
    Biochim Biophys Acta; 2016 Oct; 1857(10):1661-8. PubMed ID: 27421232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site.
    Lee DW; El Khoury Y; Francia F; Zambelli B; Ciurli S; Venturoli G; Hellwig P; Daldal F
    Biochemistry; 2011 May; 50(20):4263-72. PubMed ID: 21500804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel cyanide inhibition at cytochrome c1 of Rhodobacter capsulatus cytochrome bc1.
    Osyczka A; Moser CC; Dutton PL
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):71-6. PubMed ID: 15100019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural model for across membrane coupling between the Qo and Qi active sites of cytochrome bc1.
    Cooley JW
    Biochim Biophys Acta; 2010 Dec; 1797(12):1842-8. PubMed ID: 20513347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron sweep across four b-hemes of cytochrome bc
    Pintscher S; Pietras R; Sarewicz M; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):459-469. PubMed ID: 29596789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier transform infrared evidence of proton uptake by glutamate L212 upon reduction of the secondary quinone QB in the photosynthetic reaction center from Rhodobacter capsulatus.
    Nabedryk E; Breton J; Joshi HM; Hanson DK
    Biochemistry; 2000 Nov; 39(47):14654-63. PubMed ID: 11087422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodobacter capsulatus mutants lacking the Rieske FeS protein form a stable cytochrome bc1 subcomplex with an intact quinone reduction site.
    Davidson E; Ohnishi T; Tokito M; Daldal F
    Biochemistry; 1992 Apr; 31(13):3351-8. PubMed ID: 1313293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of acidic and aromatic amino acids in Rhodobacter capsulatus cytochrome c1. A site-directed mutagenesis study.
    Li J; Osyczka A; Conover RC; Johnson MK; Qin H; Daldal F; Knaff DB
    Biochemistry; 2003 Jul; 42(29):8818-30. PubMed ID: 12873143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a two-subunit cytochrome b-c1 subcomplex from Rhodobacter capsulatus and reconstitution of its ubihydroquinone oxidation (Qo) site with purified Fe-S protein subunit.
    Valkova-Valchanova MB; Saribas AS; Gibney BR; Dutton PL; Daldal F
    Biochemistry; 1998 Nov; 37(46):16242-51. PubMed ID: 9819216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of semiquinone-[2Fe-2S]
    Sarewicz M; Bujnowicz Ł; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Feb; 1859(2):145-153. PubMed ID: 29180241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.