BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16939270)

  • 1. Evidence for basic ferryls in cytochromes P450.
    Behan RK; Hoffart LM; Stone KL; Krebs C; Green MT
    J Am Chem Soc; 2006 Sep; 128(35):11471-4. PubMed ID: 16939270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the status of ferryl protonation.
    Behan RK; Green MT
    J Inorg Biochem; 2006 Apr; 100(4):448-59. PubMed ID: 16500711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mössbauer identification of a protonated ferryl species in catalase from Proteus mirabilis: density functional calculations on related models.
    Horner O; Oddou JL; Mouesca JM; Jouve HM
    J Inorg Biochem; 2006 Apr; 100(4):477-9. PubMed ID: 16442627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome P450: an investigation of the Mössbauer spectra of a reaction intermediate and an Fe(IV)[double bond]O model system.
    Zhang Y; Oldfield E
    J Am Chem Soc; 2004 Apr; 126(14):4470-1. PubMed ID: 15070336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT calculations of 57Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase.
    Han WG; Liu T; Lovell T; Noodleman L
    J Comput Chem; 2006 Sep; 27(12):1292-306. PubMed ID: 16786546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic ménages a trois: a molecular orbital perspective of protonated ferryl intermediates and synthetic models.
    Conradie J; Wasbotten I; Ghosh A
    J Inorg Biochem; 2006 Apr; 100(4):502-6. PubMed ID: 16504302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry.
    Green MT; Dawson JH; Gray HB
    Science; 2004 Jun; 304(5677):1653-6. PubMed ID: 15192224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "somersault" mechanism for the p-450 hydroxylation of hydrocarbons. The intervention of transient inverted metastable hydroperoxides.
    Bach RD; Dmitrenko O
    J Am Chem Soc; 2006 Feb; 128(5):1474-88. PubMed ID: 16448118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT calculations of the electric field gradient at the tin nucleus as a support of structural interpretation by 119Sn Mössbauer spectroscopy.
    Barone G; Silvestri A; Ruisi G; La Manna G
    Chemistry; 2005 Oct; 11(21):6185-91. PubMed ID: 16052634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for two ferryl species in chloroperoxidase compound II.
    Stone KL; Hoffart LM; Behan RK; Krebs C; Green MT
    J Am Chem Soc; 2006 May; 128(18):6147-53. PubMed ID: 16669684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mössbauer studies of the iron-sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site.
    Shima S; Lyon EJ; Thauer RK; Mienert B; Bill E
    J Am Chem Soc; 2005 Jul; 127(29):10430-5. PubMed ID: 16028957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The status of high-valent metal oxo complexes in the P450 cytochromes.
    Makris TM; von Koenig K; Schlichting I; Sligar SG
    J Inorg Biochem; 2006 Apr; 100(4):507-18. PubMed ID: 16510191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What kinds of ferryl species exist for compound II of chloroperoxidase? A dialog of theory with experiment.
    Lai W; Chen H; Shaik S
    J Phys Chem B; 2009 Jun; 113(22):7912-7. PubMed ID: 19408918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic description of an unusual protonated ferryl species in the catalase from Proteus mirabilis and density functional theory calculations on related models. Consequences for the ferryl protonation state in catalase, peroxidase and chloroperoxidase.
    Horner O; Mouesca JM; Solari PL; Orio M; Oddou JL; Bonville P; Jouve HM
    J Biol Inorg Chem; 2007 May; 12(4):509-25. PubMed ID: 17237942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compound I in heme thiolate enzymes: a comparative QM/MM study.
    Cho KB; Hirao H; Chen H; Carvajal MA; Cohen S; Derat E; Thiel W; Shaik S
    J Phys Chem A; 2008 Dec; 112(50):13128-38. PubMed ID: 18850694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prediction of the nuclear quadrupole splitting of 119Sn Mössbauer spectroscopy data by scalar relativistic DFT calculations.
    Krogh JW; Barone G; Lindh R
    Chemistry; 2006 Jun; 12(19):5116-21. PubMed ID: 16671047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear quadrupole moment of 119Sn.
    Barone G; Mastalerz R; Reiher M; Lindh R
    J Phys Chem A; 2008 Feb; 112(7):1666-72. PubMed ID: 18229904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-H bond activation in heme proteins: the role of thiolate ligation in cytochrome P450.
    Green MT
    Curr Opin Chem Biol; 2009 Feb; 13(1):84-8. PubMed ID: 19345605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.