These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 16939313)
1. Viridenepoxydiol, a new pentasubstituted oxiranyldecene produced by Trichoderma viride. Evidente A; Cabras A; Maddau L; Marras F; Andolfi A; Melck D; Motta A J Agric Food Chem; 2006 Sep; 54(18):6588-92. PubMed ID: 16939313 [TBL] [Abstract][Full Text] [Related]
2. Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. Evidente A; Cabras A; Maddau L; Serra S; Andolfi A; Motta A J Agric Food Chem; 2003 Nov; 51(24):6957-60. PubMed ID: 14611154 [TBL] [Abstract][Full Text] [Related]
3. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). Errakhi R; Lebrihi A; Barakate M J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305 [TBL] [Abstract][Full Text] [Related]
4. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition. Shaigan S; Seraji A; Moghaddam SA Pak J Biol Sci; 2008 Oct; 11(19):2346-50. PubMed ID: 19137869 [TBL] [Abstract][Full Text] [Related]
5. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
6. Screening of bioagents against root rot of mung bean caused by Rhizoctonia solani. Singh S; Chand H Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1017-9. PubMed ID: 17390853 [TBL] [Abstract][Full Text] [Related]
7. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mukherjee PK; Raghu K Mycopathologia; 1997; 139(3):151-5. PubMed ID: 16283454 [TBL] [Abstract][Full Text] [Related]
8. [Microfungicid--a preparation based on trichoderma viride for plant diseases control]. Kolombet LV; Zhigletsova SK; Derbyshev VV; Ezhov DV; Kosareva NI; Bystrova EV Prikl Biokhim Mikrobiol; 2001; 37(1):110-4. PubMed ID: 11234397 [TBL] [Abstract][Full Text] [Related]
9. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Sarrocco S; Mikkelsen L; Vergara M; Jensen DF; Lübeck M; Vannacci G Mycol Res; 2006 Feb; 110(Pt 2):179-87. PubMed ID: 16388938 [TBL] [Abstract][Full Text] [Related]
10. Molecular insights into development of Trichoderma interfusants for multistress tolerance enhancing antagonism against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Patel AK; Katakpara ZA; Golakiya BA J Cell Physiol; 2019 May; 234(5):7368-7383. PubMed ID: 30370526 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812 [TBL] [Abstract][Full Text] [Related]
12. The SRAP based molecular diversity related to antifungal and antioxidant bioactive constituents for biocontrol potentials of Trichoderma against Sclerotium rolfsii Scc. Hirpara DG; Gajera HP; Bhimani RD; Golakiya BA Curr Genet; 2016 Aug; 62(3):619-41. PubMed ID: 26803831 [TBL] [Abstract][Full Text] [Related]
13. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Eweis M; Elkholy SS; Elsabee MZ Int J Biol Macromol; 2006 Feb; 38(1):1-8. PubMed ID: 16413607 [TBL] [Abstract][Full Text] [Related]
14. Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii in soil. Rodriguez-Kabana R; Kelley WD; Curl EA Can J Microbiol; 1978 Apr; 24(4):487-90. PubMed ID: 25130 [TBL] [Abstract][Full Text] [Related]
15. Antifungal properties of native Trichoderma isolates against Sclerotium rolfsii and Pythium aphanidermatum infecting tobacco. Rao KL; Raju KS; Ravisankar H J Environ Biol; 2015 Nov; 36(6):1349-53. PubMed ID: 26688972 [TBL] [Abstract][Full Text] [Related]
16. Molecular heterozygosity and genetic exploitations of Trichoderma inter-fusants enhancing tolerance to fungicides and mycoparasitism against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP Infect Genet Evol; 2018 Dec; 66():26-36. PubMed ID: 30219319 [TBL] [Abstract][Full Text] [Related]
17. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Joshi BB; Bhatt RP; Bahukhandi D J Environ Biol; 2010 Nov; 31(6):921-8. PubMed ID: 21506476 [TBL] [Abstract][Full Text] [Related]
18. Biological Control of Stem Rot of Groundnut Induced by Meena PN; Meena AK; Tiwari RK; Lal MK; Kumar R Pathogens; 2024 Jul; 13(8):. PubMed ID: 39204233 [TBL] [Abstract][Full Text] [Related]
19. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Vinale F; Marra R; Scala F; Ghisalberti EL; Lorito M; Sivasithamparam K Lett Appl Microbiol; 2006 Aug; 43(2):143-8. PubMed ID: 16869896 [TBL] [Abstract][Full Text] [Related]
20. Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: affinin and reduced amides. Molina-Torres J; Salazar-Cabrera CJ; Armenta-Salinas C; Ramírez-Chávez E J Agric Food Chem; 2004 Jul; 52(15):4700-4. PubMed ID: 15264902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]