These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 16939326)

  • 1. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative alpha-dicarbonyl cleavage pathway.
    Davídek T; Robert F; Devaud S; Vera FA; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6677-84. PubMed ID: 16939326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.
    Davídek T; Devaud S; Robert F; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6667-76. PubMed ID: 16939325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of chemical pathways in the maillard reaction by 17O-NMR spectroscopy.
    Robert F; Vera FA; Kervella F; Davidek T; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():63-72. PubMed ID: 16037223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-dependent fragmentation reactions during the degradation of 1-deoxy-D-erythro-hexo-2,3-diulose.
    Voigt M; Smuda M; Pfahler C; Glomb MA
    J Agric Food Chem; 2010 May; 58(9):5685-91. PubMed ID: 20441226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and yields of acetic acid in pentose-based Maillard reaction systems.
    Davidek T; Gouézec E; Devaud S; Blank I
    Ann N Y Acad Sci; 2008 Apr; 1126():241-3. PubMed ID: 18448822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonvolatile oxidation products of glucose in Maillard model systems: formation of saccharinic and aldonic acids and their corresponding lactones.
    Haffenden LJ; Yaylayan VA
    J Agric Food Chem; 2008 Mar; 56(5):1638-43. PubMed ID: 18251497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of 1-deoxy-D-erythro-hexo-2,3-diulose: a key intermediate in the maillard chemistry of hexoses.
    Voigt M; Glomb MA
    J Agric Food Chem; 2009 Jun; 57(11):4765-70. PubMed ID: 19422225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of 1-deoxy-D-erythro-hexo-2,3-diulose in the presence of lysine leads to formation of carboxylic acid amides.
    Smuda M; Voigt M; Glomb MA
    J Agric Food Chem; 2010 May; 58(10):6458-64. PubMed ID: 20429584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of reaction conditions on the origin and yields of acetic acid generated by the maillard reaction.
    Davidek T; Devaud S; Robert F; Blank I
    Ann N Y Acad Sci; 2005 Jun; 1043():73-9. PubMed ID: 16037224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds.
    Gobert J; Glomb MA
    J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of photorelease of carboxylic acids from 1-acyl-7-nitroindolines in solutions of varying water content.
    Morrison J; Wan P; Corrie JE; Papageorgiou G
    Photochem Photobiol Sci; 2002 Dec; 1(12):960-9. PubMed ID: 12661593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rearrangement of 3-deoxy-D-erythro-hexos-2-ulose in aqueous solution: NMR evidence of intramolecular 1,2-hydrogen transfer.
    Zhang W; Carmichael I; Serianni AS
    J Org Chem; 2011 Oct; 76(20):8151-8. PubMed ID: 21793547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation pathways during Maillard-induced carbohydrate degradation.
    Smuda M; Glomb MA
    J Agric Food Chem; 2013 Oct; 61(43):10198-208. PubMed ID: 23425499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of isohumulones induces the formation of carboxylic acids by hydrolytic cleavage.
    Rakete S; Berger R; Böhme S; Glomb MA
    J Agric Food Chem; 2014 Jul; 62(30):7541-9. PubMed ID: 25026227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative pyrolysis and postpyrolytic derivatization techniques for the total analysis of maillard model systems: investigation of control parameters of maillard reaction pathways.
    Yaylayan VA; Haffenden L; Chu FL; Wnorowski A
    Ann N Y Acad Sci; 2005 Jun; 1043():41-54. PubMed ID: 16037220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.
    Fischer K; Bipp HP
    Bioresour Technol; 2005 May; 96(7):831-42. PubMed ID: 15607197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation.
    Huang L; Colas C; Ortiz de Montellano PR
    J Am Chem Soc; 2004 Oct; 126(40):12865-73. PubMed ID: 15469283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. News on the Maillard reaction of oligomeric carbohydrates: a survey.
    Kroh LW; Schulz A
    Nahrung; 2001 Jun; 45(3):160-3. PubMed ID: 11455781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity of thermally treated α-dicarbonyl compounds.
    Pfeifer YV; Haase PT; Kroh LW
    J Agric Food Chem; 2013 Mar; 61(12):3090-6. PubMed ID: 23432453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction.
    Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I
    J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.