BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16939371)

  • 1. Biocompatibility of electrochemical glucose sensors implanted in the subcutis of pigs.
    Kvist PH; Iburg T; Bielecki M; Gerstenberg M; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Aug; 8(4):463-75. PubMed ID: 16939371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of subcutaneous glucose sensor implantation on skin mRNA expression in pigs.
    Kvist PH; Iburg T; Dawson HD; Jensen HE
    Diabetes Technol Ther; 2010 Oct; 12(10):791-9. PubMed ID: 20818977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of subcutaneously-implanted glucose sensors for continuous glucose measurements in hyperglycemic pigs.
    Kvist PH; Bielecki M; Gerstenberg M; Rossmeisl C; Jensen HE; Rolin B; Hasselager E
    In Vivo; 2006; 20(2):195-203. PubMed ID: 16634519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatibility of an electrochemical sensor for continuous glucose monitoring in subcutaneous tissue.
    Mang A; Pill J; Gretz N; Kränzlin B; Buck H; Schoemaker M; Petrich W
    Diabetes Technol Ther; 2005 Feb; 7(1):163-73. PubMed ID: 15738714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Subcutaneous Tissue Response to Glucose Sensors: Macrophages Accumulation Impact on Sensor Accuracy.
    Rigla M; Pons B; Rebasa P; Luna A; Pozo FJ; Caixàs A; Villaplana M; Subías D; Bella MR; Combalia N
    Diabetes Technol Ther; 2018 Apr; 20(4):296-302. PubMed ID: 29470128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in continuous glucose monitoring: biocompatibility of glucose sensors for implantation in subcutis.
    Kvist PH; Jensen HE
    J Diabetes Sci Technol; 2007 Sep; 1(5):746-52. PubMed ID: 19885143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Murine model of implantable glucose sensors: a novel model for glucose sensor development.
    Klueh U; Kreutzer DL
    Diabetes Technol Ther; 2005 Oct; 7(5):727-37; discussion 738-40. PubMed ID: 16241876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting glucose sensor behavior in blood using transport modeling: relative impacts of protein biofouling and cellular metabolic effects.
    Novak MT; Yuan F; Reichert WM
    J Diabetes Sci Technol; 2013 Nov; 7(6):1547-60. PubMed ID: 24351181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of diabetes on the foreign body response to nitric oxide-releasing implants.
    Soto RJ; Merricks EP; Bellinger DA; Nichols TC; Schoenfisch MH
    Biomaterials; 2018 Mar; 157():76-85. PubMed ID: 29245053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue response to subcutaneous implantation of glucose-oxidase-based glucose sensors in rats.
    Henninger N; Woderer S; Kloetzer HM; Staib A; Gillen R; Li L; Yu X; Gretz N; Kraenzlin B; Pill J
    Biosens Bioelectron; 2007 Aug; 23(1):26-34. PubMed ID: 17467971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function and accuracy of glucose sensors beyond their stated expiry date.
    Chlup R; Jelenová D; Chlupová K; Zapletalová J; Chlupová L; Bartek J
    Diabetes Technol Ther; 2006 Aug; 8(4):495-504. PubMed ID: 16939374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A promising solution to enhance the sensocompatibility of biosensors in continuous glucose monitoring systems.
    van den Bosch EE; de Bont NH; Qiu J; Gelling OJ
    J Diabetes Sci Technol; 2013 Mar; 7(2):455-64. PubMed ID: 23567005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous, Dexamethasone-loaded polyurethane coatings extend performance window of implantable glucose sensors in vivo.
    Vallejo-Heligon SG; Brown NL; Reichert WM; Klitzman B
    Acta Biomater; 2016 Jan; 30():106-115. PubMed ID: 26537203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality?
    Rebrin K; Fischer U; Hahn von Dorsche H; von Woetke T; Abel P; Brunstein E
    J Biomed Eng; 1992 Jan; 14(1):33-40. PubMed ID: 1569738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended use of a new continuous glucose monitoring system with wireless data transmission in children with type 1 diabetes mellitus.
    Wong LJ; Buckingham BA; Kunselman B; Istoc E; Leach J; Purvis R
    Diabetes Technol Ther; 2006 Apr; 8(2):139-45. PubMed ID: 16734544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of CGMS during rapid blood glucose changes in patients with type 1 diabetes.
    Wilhelm B; Forst S; Weber MM; Larbig M; Pfützner A; Forst T
    Diabetes Technol Ther; 2006 Apr; 8(2):146-55. PubMed ID: 16734545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring.
    Ballerstadt R; Evans C; Gowda A; McNichols R
    Diabetes Technol Ther; 2006 Jun; 8(3):296-311. PubMed ID: 16800751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Activation of nuclear factor kappaB (NF-kappaB), induction of proinflammatory cytokines in vitro and evaluation of biocompatibility of the carbonate ceramic in vivo].
    Zywicka B; Czarny A; Zaczyńska E; Karaś J
    Polim Med; 2006; 36(3):23-35. PubMed ID: 17190290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of long-term performance of minimally invasive glucose biosensors.
    Yu B; Ju Y; West L; Moussy Y; Moussy F
    Diabetes Technol Ther; 2007 Jun; 9(3):265-75. PubMed ID: 17561797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.