BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16939696)

  • 1. A dynamic model for assessing radiological consequences of tritium routinely released in rivers. Application to the Loire River.
    Ciffroy P; Siclet F; Damois C; Luck M
    J Environ Radioact; 2006; 90(2):110-39. PubMed ID: 16939696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic model for assessing radiological consequences of routine releases in the Loire river: parameterisation and uncertainty/sensitivity analysis.
    Ciffroy P; Siclet F; Damois C; Luck M; Duboudin C
    J Environ Radioact; 2005; 83(1):9-48. PubMed ID: 15935908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling tritium flux from water to atmosphere: application to the Loire River.
    Marang L; Siclet F; Luck M; Maro D; Tenailleau L; Jean-Baptiste P; Fourré E; Fontugne M
    J Environ Radioact; 2011 Mar; 102(3):244-51. PubMed ID: 21255883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment, validation and intercomparison of operational models for predicting tritium migration from routine discharges of nuclear power plants: the case of Loire River.
    Goutal N; Luck M; Boyer P; Monte L; Siclet F; Angeli G
    J Environ Radioact; 2008 Feb; 99(2):367-82. PubMed ID: 18068278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent enrichment of organically bound tritium in rivers explained by the heritage of our past.
    Eyrolle-Boyer F; Boyer P; Claval D; Charmasson S; Cossonnet C
    J Environ Radioact; 2014 Oct; 136():162-8. PubMed ID: 24956583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twenty-five-year study of radionuclides in the Susquehanna river via periphyton biomonitors.
    Patrick R; Palms J; Kreeger D; Harris C
    Health Phys; 2007 Jan; 92(1):1-9. PubMed ID: 17164593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status.
    Eyrolle F; Claval D; Gontier G; Antonelli C
    J Environ Monit; 2008 Jul; 10(7):800-11. PubMed ID: 18688446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury contamination in the vicinity of a derelict chlor-alkali plant Part II: contamination of the aquatic and terrestrial food chain and potential risks to the local population.
    Ullrich SM; Ilyushchenko MA; Tanton TW; Uskov GA
    Sci Total Environ; 2007 Aug; 381(1-3):290-306. PubMed ID: 17433415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomonitoring plan for assessing potential radionuclide exposure using Amchitka Island in the Aleutian chain of Alaska as a case study.
    Burger J; Gochfeld M; Kosson DS; Powers CW
    J Environ Radioact; 2007; 98(3):315-28. PubMed ID: 17683832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of agricultural vs. natural ecosystem pathways in temperate climates in assessments of long-term radiological impact.
    Kłos R; Albrecht A
    J Environ Radioact; 2005; 83(2):137-69. PubMed ID: 15960997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are the risks from tritium exposures being underestimated?
    Paquet F; Métivier H
    J Radiol Prot; 2009 Jun; 29(2):175-81. PubMed ID: 19454789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of tritium in estuarine waters: the role of organic matter.
    Turner A; Millward GE; Stemp M
    J Environ Radioact; 2009 Oct; 100(10):890-5. PubMed ID: 19608308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of tritium in the terrestrial and aquatic environments of the Creys-Malville nuclear power plant (2002-2005).
    Jean-Baptiste P; Baumier D; Fourré E; Dapoigny A; Clavel B
    J Environ Radioact; 2007; 94(2):107-18. PubMed ID: 17376566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of tritium, 60Co and 137Cs in the vicinity of the warm water outlet of the Paks Nuclear Power Plant, Hungary.
    Janovics R; Bihari Á; Papp L; Dezső Z; Major Z; Sárkány KE; Bujtás T; Veres M; Palcsu L
    J Environ Radioact; 2014 Feb; 128():20-6. PubMed ID: 24246753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comments on "Are the risks from tritium exposures being underestimated?".
    Little MP; Lambert BE
    J Radiol Prot; 2009 Sep; 29(3):454-6. PubMed ID: 19810288
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhanced activities of organically bound tritium in biota samples.
    Svetlik I; Fejgl M; Malátová I; Tomaskova L
    Appl Radiat Isot; 2014 Nov; 93():82-6. PubMed ID: 24582481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 2. Uptake by fish.
    Smith JT
    Sci Total Environ; 2006 Sep; 368(2-3):502-18. PubMed ID: 16647745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved method for Organic Bound Tritium (OBT) determination in urine samples.
    Gonen R; Marco R; German U; Katorza E; Alfassi ZB; Haquin G; Tshuva A; Pelled O
    Radiat Prot Dosimetry; 2007; 125(1-4):460-4. PubMed ID: 17766260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for calculating dose conversion coefficients for terrestrial and aquatic biota.
    Ulanovsky A; Pröhl G; Gómez-Ros JM
    J Environ Radioact; 2008 Sep; 99(9):1440-8. PubMed ID: 18329144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the spatio-temporal evolution of 3H in the waters of the River Tagus.
    Baeza A; García E; Miró C; Periáñez R
    J Environ Radioact; 2006; 86(3):367-83. PubMed ID: 16360243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.