These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 16940181)

  • 61. Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation.
    Wu H; Sun L; Zhang Y; Chen Y; Shi B; Li R; Wang Y; Liang J; Fan D; Wu G; Wang D; Li S; Shang Y
    J Biol Chem; 2006 Aug; 281(31):21848-21856. PubMed ID: 16760465
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1.
    Yi P; Feng Q; Amazit L; Lonard DM; Tsai SY; Tsai MJ; O'Malley BW
    Mol Cell; 2008 Feb; 29(4):465-76. PubMed ID: 18313384
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transcriptional repression of AIB1 by FoxG1 leads to apoptosis in breast cancer cells.
    Li JV; Chien CD; Garee JP; Xu J; Wellstein A; Riegel AT
    Mol Endocrinol; 2013 Jul; 27(7):1113-27. PubMed ID: 23660594
    [TBL] [Abstract][Full Text] [Related]  

  • 64. miR-17-5p affects porcine granulosa cell growth and oestradiol synthesis by targeting E2F1 gene.
    Zhang S; Wang L; Wang L; Chen Y; Li F
    Reprod Domest Anim; 2019 Nov; 54(11):1459-1469. PubMed ID: 31424586
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Estrogen receptor alpha/beta, AIB1, and TIF2 in colorectal carcinogenesis: do coregulators have prognostic significance?
    Grivas PD; Tzelepi V; Sotiropoulou-Bonikou G; Kefalopoulou Z; Papavassiliou AG; Kalofonos H
    Int J Colorectal Dis; 2009 Jun; 24(6):613-22. PubMed ID: 19198856
    [TBL] [Abstract][Full Text] [Related]  

  • 66. MTUS1 tumor suppressor and its miRNA regulators in fibroadenoma and breast cancer.
    Kara M; Kaplan M; Bozgeyik I; Ozcan O; Celik OI; Bozgeyik E; Yumrutas O
    Gene; 2016 Aug; 587(2):173-7. PubMed ID: 27155522
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Profiling of estrogen-regulated microRNAs in breast cancer cells.
    Katchy A; Williams C
    J Vis Exp; 2014 Feb; (84):e51285. PubMed ID: 24637950
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Linkage of E2F1 transcriptional network and cell proliferation with respiratory chain activity in breast cancer cells.
    Mori K; Uchida T; Fukumura M; Tamiya S; Higurashi M; Sakai H; Ishikawa F; Shibanuma M
    Cancer Sci; 2016 Jul; 107(7):963-71. PubMed ID: 27094710
    [TBL] [Abstract][Full Text] [Related]  

  • 69. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer.
    Pillai MM; Gillen AE; Yamamoto TM; Kline E; Brown J; Flory K; Hesselberth JR; Kabos P
    Breast Cancer Res Treat; 2014 Jul; 146(1):85-97. PubMed ID: 24906430
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Minireview: nuclear receptors and breast cancer.
    Conzen SD
    Mol Endocrinol; 2008 Oct; 22(10):2215-28. PubMed ID: 18417735
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MicroRNA-182-5p targets a network of genes involved in DNA repair.
    Krishnan K; Steptoe AL; Martin HC; Wani S; Nones K; Waddell N; Mariasegaram M; Simpson PT; Lakhani SR; Gabrielli B; Vlassov A; Cloonan N; Grimmond SM
    RNA; 2013 Feb; 19(2):230-42. PubMed ID: 23249749
    [TBL] [Abstract][Full Text] [Related]  

  • 72. miR-129-5p Plays an Anticancer Role in Colon Cancer by Targeting RSF1.
    Hao J; Wei H; Qi Y; Liu H
    Cell Mol Biol (Noisy-le-grand); 2022 Feb; 67(5):196-201. PubMed ID: 35818253
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Excess of miRNA-378a-5p perturbs mitotic fidelity and correlates with breast cancer tumourigenesis in vivo.
    Winsel S; Mäki-Jouppila J; Tambe M; Aure MR; Pruikkonen S; Salmela AL; Halonen T; Leivonen SK; Kallio L; Børresen-Dale AL; Kallio MJ
    Br J Cancer; 2014 Nov; 111(11):2142-51. PubMed ID: 25268374
    [TBL] [Abstract][Full Text] [Related]  

  • 74. miR-378(∗) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway.
    Eichner LJ; Perry MC; Dufour CR; Bertos N; Park M; St-Pierre J; Giguère V
    Cell Metab; 2010 Oct; 12(4):352-361. PubMed ID: 20889127
    [TBL] [Abstract][Full Text] [Related]  

  • 75. microRNA‑372 inhibits proliferation and induces apoptosis in human breast cancer cells by directly targeting E2F1.
    Zhao YX; Liu HC; Ying WY; Wang CY; Yu YJ; Sun WJ; Liu JF
    Mol Med Rep; 2017 Dec; 16(6):8069-8075. PubMed ID: 28944922
    [TBL] [Abstract][Full Text] [Related]  

  • 76. HER2-encoded mir-4728 forms a receptor-independent circuit with miR-21-5p through the non-canonical poly(A) polymerase PAPD5.
    Newie I; Søkilde R; Persson H; Jacomasso T; Gorbatenko A; Borg Å; de Hoon M; Pedersen SF; Rovira C
    Sci Rep; 2016 Oct; 6():35664. PubMed ID: 27752128
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Micro-RNAs and breast cancer.
    Le Quesne J; Caldas C
    Mol Oncol; 2010 Jun; 4(3):230-41. PubMed ID: 20537965
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Estrogen-estrogen receptor signaling suppresses the transcription of ERRF in breast cancer cells.
    Luo A; Su D; Zhang X; Qi L; Fu L; Dong JT
    J Genet Genomics; 2016 Sep; 43(9):565-567. PubMed ID: 27599921
    [No Abstract]   [Full Text] [Related]  

  • 79. Breast cancer quality control.
    Patterson C; Ronnebaum S
    Nat Cell Biol; 2009 Mar; 11(3):239-41. PubMed ID: 19255569
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Estrogen action: Receptors, transcripts, cell signaling, and non-coding RNAs in normal physiology and disease.
    Klinge CM
    Mol Cell Endocrinol; 2015 Dec; 418 Pt 3():191-2. PubMed ID: 26681526
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.