BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 16940440)

  • 1. Real-time measurements of protein affinities on membrane surfaces by fluorescence spectroscopy.
    Philip F; Scarlata S
    Sci STKE; 2006 Aug; 2006(350):pl5. PubMed ID: 16940440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer.
    Leifert WR; Bailey K; Cooper TH; Aloia AL; Glatz RV; McMurchie EJ
    Anal Biochem; 2006 Aug; 355(2):201-12. PubMed ID: 16729956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions.
    García-Sáez AJ; Schwille P
    Methods; 2008 Oct; 46(2):116-22. PubMed ID: 18634881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo interaction between RGS4 and calmodulin visualized with FRET techniques: possible involvement of lipid raft.
    Ishii M; Ikushima M; Kurachi Y
    Biochem Biophys Res Commun; 2005 Dec; 338(2):839-46. PubMed ID: 16246308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of receptor and G-protein interactions in living cells.
    Galés C; Rebois RV; Hogue M; Trieu P; Breit A; Hébert TE; Bouvier M
    Nat Methods; 2005 Mar; 2(3):177-84. PubMed ID: 15782186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology.
    Maurel D; Kniazeff J; Mathis G; Trinquet E; Pin JP; Ansanay H
    Anal Biochem; 2004 Jun; 329(2):253-62. PubMed ID: 15158484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent labeling of cell-surface proteins for in-vivo FRET studies.
    Meyer BH; Martinez KL; Segura JM; Pascoal P; Hovius R; George N; Johnsson K; Vogel H
    FEBS Lett; 2006 Mar; 580(6):1654-8. PubMed ID: 16497304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New eyes to see texture in ligand efficacy.
    Kenakin TP
    Nat Methods; 2005 Mar; 2(3):163-4. PubMed ID: 15782182
    [No Abstract]   [Full Text] [Related]  

  • 9. Methods for mapping of interaction networks involving membrane proteins.
    Hooker BS; Bigelow DJ; Lin CT
    Biochem Biophys Res Commun; 2007 Nov; 363(3):457-61. PubMed ID: 17897627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation.
    Lata S; Gavutis M; Tampé R; Piehler J
    J Am Chem Soc; 2006 Feb; 128(7):2365-72. PubMed ID: 16478192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative measurements of protein interactions in a crowded cellular environment.
    Li E; Placone J; Merzlyakov M; Hristova K
    Anal Chem; 2008 Aug; 80(15):5976-85. PubMed ID: 18597478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells.
    Lohse MJ; Hoffmann C; Nikolaev VO; Vilardaga JP; Bünemann M
    Adv Protein Chem; 2007; 74():167-88. PubMed ID: 17854658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of protein-protein interactions by using droplet-based microfluidics.
    Srisa-Art M; Kang DK; Hong J; Park H; Leatherbarrow RJ; Edel JB; Chang SI; deMello AJ
    Chembiochem; 2009 Jul; 10(10):1605-11. PubMed ID: 19496107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations.
    Lalonde S; Ehrhardt DW; Loqué D; Chen J; Rhee SY; Frommer WB
    Plant J; 2008 Feb; 53(4):610-35. PubMed ID: 18269572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence correlation spectroscopy: linking molecular dynamics to biological function in vitro and in situ.
    Fitzpatrick JA; Lillemeier BF
    Curr Opin Struct Biol; 2011 Oct; 21(5):650-60. PubMed ID: 21767945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system.
    Schwarzmann G; Wendeler M; Sandhoff K
    Glycobiology; 2005 Dec; 15(12):1302-11. PubMed ID: 16079415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing single-molecule protein conformational dynamics.
    Lu HP
    Acc Chem Res; 2005 Jul; 38(7):557-65. PubMed ID: 16028890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods to measure the lateral diffusion of membrane lipids and proteins.
    Chen Y; Lagerholm BC; Yang B; Jacobson K
    Methods; 2006 Jun; 39(2):147-53. PubMed ID: 16846741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.