These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
930 related articles for article (PubMed ID: 16940549)
1. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549 [TBL] [Abstract][Full Text] [Related]
2. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation. Mochizuki K; Oguro A; Ohtsu T; Sonenberg N; Nakamura Y RNA; 2005 Jan; 11(1):77-89. PubMed ID: 15611299 [TBL] [Abstract][Full Text] [Related]
3. A single amino acid change in protein synthesis initiation factor 4G renders cap-dependent translation resistant to picornaviral 2A proteases. Lamphear BJ; Rhoads RE Biochemistry; 1996 Dec; 35(49):15726-33. PubMed ID: 8961935 [TBL] [Abstract][Full Text] [Related]
4. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins. Schlatter S; Senn C; Fussenegger M Biotechnol Bioeng; 2003 Jul; 83(2):210-25. PubMed ID: 12768627 [TBL] [Abstract][Full Text] [Related]
5. A new translational regulator with homology to eukaryotic translation initiation factor 4G. Imataka H; Olsen HS; Sonenberg N EMBO J; 1997 Feb; 16(4):817-25. PubMed ID: 9049310 [TBL] [Abstract][Full Text] [Related]
6. Increase in cap- and IRES-dependent protein synthesis by overproduction of translation initiation factor eIF4G. Hayashi S; Nishimura K; Fukuchi-Shimogori T; Kashiwagi K; Igarashi K Biochem Biophys Res Commun; 2000 Oct; 277(1):117-23. PubMed ID: 11027650 [TBL] [Abstract][Full Text] [Related]
7. [Translational control by the poly(A) binding protein: a check for mRNA integrity]. Svitkin YV; Sonenberg N Mol Biol (Mosk); 2006; 40(4):684-93. PubMed ID: 16913227 [TBL] [Abstract][Full Text] [Related]
8. Competitive and noncompetitive binding of eIF4B, eIF4A, and the poly(A) binding protein to wheat translation initiation factor eIFiso4G. Cheng S; Gallie DR Biochemistry; 2010 Sep; 49(38):8251-65. PubMed ID: 20795652 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI. Zakowicz H; Yang HS; Stark C; Wlodawer A; Laronde-Leblanc N; Colburn NH RNA; 2005 Mar; 11(3):261-74. PubMed ID: 15661843 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Low WK; Dang Y; Schneider-Poetsch T; Shi Z; Choi NS; Merrick WC; Romo D; Liu JO Mol Cell; 2005 Dec; 20(5):709-22. PubMed ID: 16337595 [TBL] [Abstract][Full Text] [Related]
11. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G. Castelló A; Sanz MA; Molina S; Carrasco L J Mol Biol; 2006 Feb; 355(5):942-56. PubMed ID: 16343528 [TBL] [Abstract][Full Text] [Related]
12. Translation driven by an eIF4G core domain in vivo. De Gregorio E; Preiss T; Hentze MW EMBO J; 1999 Sep; 18(17):4865-74. PubMed ID: 10469664 [TBL] [Abstract][Full Text] [Related]
13. Domain-dependent interaction of eukaryotic initiation factor eIF4A for binding to middle and C-terminal domains of eIF4G. Fujita Y; Oe M; Tutsumino T; Morino S; Imataka H; Tomoo K; Ishida T J Biochem; 2009 Sep; 146(3):359-68. PubMed ID: 19470518 [TBL] [Abstract][Full Text] [Related]
14. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. Imataka H; Gradi A; Sonenberg N EMBO J; 1998 Dec; 17(24):7480-9. PubMed ID: 9857202 [TBL] [Abstract][Full Text] [Related]
15. Cap-independent translation conferred by the 5' leader of tobacco etch virus is eukaryotic initiation factor 4G dependent. Gallie DR J Virol; 2001 Dec; 75(24):12141-52. PubMed ID: 11711605 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin. Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315 [TBL] [Abstract][Full Text] [Related]
17. A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Terenin IM; Dmitriev SE; Andreev DE; Royall E; Belsham GJ; Roberts LO; Shatsky IN Mol Cell Biol; 2005 Sep; 25(17):7879-88. PubMed ID: 16107731 [TBL] [Abstract][Full Text] [Related]
18. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20. Ptushkina M; von der Haar T; Vasilescu S; Frank R; Birkenhäger R; McCarthy JE EMBO J; 1998 Aug; 17(16):4798-808. PubMed ID: 9707439 [TBL] [Abstract][Full Text] [Related]
19. eIF4G and CBP80 share a common origin and similar domain organization: implications for the structure and function of eIF4G. Marintchev A; Wagner G Biochemistry; 2005 Sep; 44(37):12265-72. PubMed ID: 16156639 [TBL] [Abstract][Full Text] [Related]
20. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Craig AW; Haghighat A; Yu AT; Sonenberg N Nature; 1998 Apr; 392(6675):520-3. PubMed ID: 9548260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]