These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16941296)

  • 41. How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern.
    Ellenrieder M; Steinhauser E; Bader R; Mittelmeier W
    J Orthop Sci; 2012 May; 17(3):205-12. PubMed ID: 22406866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Primary rotational stability of cylindrical and conical revision hip stems as a function of femoral bone defects: an in vitro comparison.
    Jakubowitz E; Bitsch RG; Heisel C; Lee C; Kretzer JP; Thomsen MN
    J Biomech; 2008 Oct; 41(14):3078-84. PubMed ID: 18809179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surgical variables affect the mechanics of a hip resurfacing system.
    Long JP; Bartel DL
    Clin Orthop Relat Res; 2006 Dec; 453():115-22. PubMed ID: 17016222
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Hip centralising forces of the iliotibial tract with various femoral neck angles].
    Birnbaum K; Pandorf T; Prescher A; Niethard FU; Weisskopf M
    Z Orthop Unfall; 2009; 147(3):341-9. PubMed ID: 19551586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing.
    Rothstock S; Uhlenbrock A; Bishop N; Morlock M
    J Biomech; 2010 Feb; 43(3):521-6. PubMed ID: 19913227
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Failure of cementless fixation of the femoral component in total hip arthroplasty.
    Otani T; Whiteside LA
    Orthop Clin North Am; 1992 Apr; 23(2):335-46. PubMed ID: 1570145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Periprosthetic bone remodelling of a collum femoris preserving cementless titanium femoral hip replacement.
    Gillies RM; Kohan L; Cordingley R
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):97-102. PubMed ID: 18651275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subsidence in two uncemented femoral stems: an in vitro study.
    Sotereanos NG; Wohlrab D; Hofer A; Kuxhaus L; Miller MC
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1067-72. PubMed ID: 23804948
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis.
    Baggi L; Cappelloni I; Di Girolamo M; Maceri F; Vairo G
    J Prosthet Dent; 2008 Dec; 100(6):422-31. PubMed ID: 19033026
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations.
    Pal B; Gupta S; New AM; Browne M
    J Biomech; 2010 Jul; 43(10):1923-30. PubMed ID: 20392448
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of femur size and morphology on load transfer in the resurfaced femoral head: A large scale, multi-subject finite element study.
    Bryan R; Nair PB; Taylor M
    J Biomech; 2012 Jul; 45(11):1952-8. PubMed ID: 22704609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.
    Baharuddin MY; Salleh ShH; Hamedi M; Zulkifly AH; Lee MH; Mohd Noor A; Harris AR; Abdul Majid N
    Biomed Res Int; 2014; 2014():478248. PubMed ID: 24800230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanical simulation of muscle loading on the proximal femur: analysis of cemented femoral component migration with and without muscle loading.
    Britton JR; Walsh LA; Prendergast PJ
    Clin Biomech (Bristol); 2003 Aug; 18(7):637-46. PubMed ID: 12880711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss.
    Tomaszewski PK; van Diest M; Bulstra SK; Verdonschot N; Verkerke GJ
    J Biomech; 2012 Jul; 45(11):1875-80. PubMed ID: 22677337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stress shielding and stress concentration of contemporary epiphyseal hip prostheses.
    Cristofolini L; Juszczyk M; Taddei F; Field RE; Rushton N; Viceconti M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):27-44. PubMed ID: 19239065
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [The bending rod prosthesis: an experimental approach to metaphyseal hip arthroplasty].
    Fottner A; Mazoochian F; Plitz W; Schulze Pellengahr Cv; Birkenmaier C; Jansson V
    Biomed Tech (Berl); 2007 Oct; 52(5):346-50. PubMed ID: 17915996
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strain pattern following surface replacement of the hip.
    Ganapathi M; Evans S; Roberts P
    Proc Inst Mech Eng H; 2008 Jan; 222(1):13-8. PubMed ID: 18335714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fatigue testing of a proximal femoral hip component.
    Macdonald W; Carlsson LV; Gathercole N; Jacobsson CM
    Proc Inst Mech Eng H; 2003; 217(2):137-45. PubMed ID: 12666781
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tissue differentiation around a short stemmed metaphyseal loading implant employing a modified mechanoregulatory algorithm: a finite element study.
    Puthumanapully PK; Browne M
    J Orthop Res; 2011 May; 29(5):787-94. PubMed ID: 21437960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of the lateral rotators on load transfer in the human hip joint revealed by mechanical analysis.
    Weißgraeber P; V D Wall H; Khabbazeh S; Kroker AM; Becker W
    Ann Anat; 2012 Sep; 194(5):461-6. PubMed ID: 22694841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.