These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 16941443)

  • 21. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of surfactant and gentle agitation on inkjet dispensing of living cells.
    Parsa S; Gupta M; Loizeau F; Cheung KC
    Biofabrication; 2010 Jun; 2(2):025003. PubMed ID: 20811131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inkjet printing of viable mammalian cells.
    Xu T; Jin J; Gregory C; Hickman JJ; Boland T
    Biomaterials; 2005 Jan; 26(1):93-9. PubMed ID: 15193884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications.
    Cui C; Kim DO; Pack MY; Han B; Han L; Sun Y; Han LH
    Biofabrication; 2020 Aug; 12(4):045018. PubMed ID: 32650325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A brief review of extrusion-based tissue scaffold bio-printing.
    Ning L; Chen X
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28544779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo.
    Catros S; Guillemot F; Nandakumar A; Ziane S; Moroni L; Habibovic P; van Blitterswijk C; Rousseau B; Chassande O; Amédée J; Fricain JC
    Tissue Eng Part C Methods; 2012 Jan; 18(1):62-70. PubMed ID: 21895563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel 3D printing PCL/GelMA scaffold containing USPIO for MRI-guided bile duct repair.
    Li H; Yin Y; Xiang Y; Liu H; Guo R
    Biomed Mater; 2020 May; 15(4):045004. PubMed ID: 32092713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biocompatible inkjet printing technique for designed seeding of individual living cells.
    Nakamura M; Kobayashi A; Takagi F; Watanabe A; Hiruma Y; Ohuchi K; Iwasaki Y; Horie M; Morita I; Takatani S
    Tissue Eng; 2005; 11(11-12):1658-66. PubMed ID: 16411811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioprinted Scaffolds for Cartilage Tissue Engineering.
    Kang HW; Yoo JJ; Atala A
    Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs.
    Luo Y; Akkineni AR; Gelinsky M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):279-85. PubMed ID: 24844004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional bioprinting of rat embryonic neural cells.
    Lee W; Pinckney J; Lee V; Lee JH; Fischer K; Polio S; Park JK; Yoo SS
    Neuroreport; 2009 May; 20(8):798-803. PubMed ID: 19369905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D reactive inkjet printing of poly-ɛ-lysine/gellan gum hydrogels for potential corneal constructs.
    Duffy GL; Liang H; Williams RL; Wellings DA; Black K
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112476. PubMed ID: 34857261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on preparation of 3D printing degradable tissue engineering ossicles].
    Lu XX; Li XX; Zhao DH; Ji JY; Tong BS; Sun JJ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Aug; 55(8):764-768. PubMed ID: 32791775
    [No Abstract]   [Full Text] [Related]  

  • 40. Scaffold fabrication by indirect three-dimensional printing.
    Lee M; Dunn JC; Wu BM
    Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.